AI之Data之Label Tool:Label Studio(多类型数据标注工具)的简介、安装和使用方法、案例应用之详细攻略

AI之Data之Label Tool:Label Studio(多类型数据标注工具)的简介、安装和使用方法、案例应用之详细攻略

目录

Label Studio的简介

1、特点

Label Studio的安装和使用方法:

1、Label Studio 提供多种安装方式

T1、使用Docker安装

T2、使用pip安装:(Python >=3.8)

T3、使用poetry安装:

T4、使用Anaconda安装:

T5、本地开发环境安装

T6、云端部署

2、使用方法

第一步,安装Label Studio

第二步,启动Label Studio

第三步,启动后,在浏览器中访问 http://localhost:8080。

第四步,注册账号

第五步,创建项目

第六步,导入数据

第七步,设置标注

第八步,保存项目

第九步,开始标注和注释数据

Label Studio的案例应用


Label Studio简介

Label Studio 是一个开源的多类型数据标注和注释工具,具有标准化的输出格式。它允许你使用简单直观的界面来标注音频、文本、图像、视频和时间序列等多种类型的数据,并导出到各种模型格式。Label Studio 可用于准备原始数据或改进现有训练数据,从而获得更准确的机器学习模型。

Label Studio 提供了多种灵活的安装和部署方式,以及丰富的功能来支持各种数据类型的标注。 其易用性和可扩展性使其成为一个强大的数据标注工具。 用户需要根据自身需求选择合适的安装方式并进行配置。

GitHub地址:GitHub - HumanSignal/label-studio: Label Studio is a multi-type data labeling and annotation tool with standardized output format

官网地址Open Source Data Labeling | Label Studio

1、特点

>> 多用户标注:支持多用户同时进行标注,标注结果与用户账号绑定。

>> 多个项目:可在单个实例中处理多个数据集和项目。

>> 简化的设计:界面简洁易用,便于用户专注于标注任务。

>> 可配置的标签格式:允许用户自定义可视化界面以满足特定标注需求。

>> 支持多种数据类型:包括图像、音频、文本、HTML、时间序列和视频。

>> 多种导入方式:支持从文件或云存储(如 Amazon AWS S3、Google Cloud Storage)以及 JSON、CSV、TSV、RAR 和 ZIP 档案导入数据。

>> 与机器学习模型集成:可连接机器学习模型,进行预标注、在线学习和主动学习。

>> 可嵌入数据管道:REST API 方便集成到现有数据管道中。

>> 内置模板:提供多种数据标注模板,也支持自定义模板。

Label Studio安装和使用方法:

1、Label Studio 提供多种安装方式

T1、使用Docker安装

拉取镜像:docker pull heartexlabs/label-studio:latest
运行容器:docker run -it -p 8080:8080 -v $(pwd)/mydata:/label-studio/data heartexlabs/label-studio:latest (将数据存储在 ./mydata 目录)
访问:http://localhost:8080
覆盖默认Docker安装:可以使用附加参数覆盖默认启动命令,例如:docker run -it -p 8080:8080 -v $(pwd)/mydata:/label-studio/data heartexlabs/label-studio:latest label-studio --log-level DEBUG
构建本地镜像:docker build -t heartexlabs/label-studio:latest .
使用Docker Compose运行 (Label Studio + Nginx + PostgreSQL):docker-compose up
使用Docker Compose + MinIO运行 (本地S3存储):docker compose -f docker-compose.yml -f docker-compose.minio.yml up -d (需要在hosts文件中添加条目)

T2、使用pip安装:(Python >=3.8)

pip install label-studio

启动服务器:
label-studio (访问 http://localhost:8080)

T3、使用poetry安装:

安装poetry:pip install poetry
创建项目:poetry new my-label-studio
添加依赖:cd my-label-studio && poetry add label-studio
激活环境:poetry shell
启动服务器:label-studio (访问 http://localhost:8080)

T4、使用Anaconda安装:

创建环境:conda create --name label-studio
激活环境:conda activate label-studio
安装依赖:conda install psycopg2 && pip install label-studio

T5、本地开发环境安装

安装依赖:pip install poetry && poetry install
数据库迁移:python label_studio/manage.py migrate && python label_studio/manage.py collectstatic
启动开发服务器:python label_studio/manage.py runserver (访问 http://localhost:8080)

T6、云端部署

支持一键部署到Heroku, Microsoft Azure, 或 Google Cloud Platform。

2、使用方法

第一步,安装Label Studio

在命令行中运行以下命令进行安装:

pip install label-studio

第二步,启动Label Studio

在命令行中运行以下命令启动服务:

label-studio start

第三步,启动后,在浏览器中访问 http://localhost:8080

第四步,注册账号

使用您创建的电子邮件地址和密码进行注册。

第五步,创建项目

点击“Create”按钮创建一个新项目,开始标注数据。

为项目命名,并可选地输入描述和选择颜色。

第六步,导入数据

点击“Data Import”,上传您想要使用的数据文件。如果您的数据位于本地目录、云存储桶或数据库,可以暂时跳过这一步。

第七步,设置标注

点击“Labeling Setup”,选择一个模板并根据您的使用场景自定义标签名称。

第八步,保存项目

点击“Save”保存您的项目。

第九步,开始标注和注释数据

现在您已经准备好开始标注和注释您的数据了!

Label Studio案例应用

用户可以根据自己的数据和标注需求,在Label Studio 的界面上进行配置和操作。

持续更新中……

### Label Studio安装方法 #### Docker 安装方式 对于希望快速部署的用户,在各种操作系统上推荐使用 Docker 来安装 Label Studio。这提供了一种一致的方式来设置开发环境而无需担心底层操作系统的差异。 执行以下命令来通过 Docker 启动最新版本的 Label Studio: ```bash docker run -it -p 8080:8080 -v `pwd`/mydata:/label-studio/data heartexlabs/label-studio:latest [^1] ``` 这条指令会映射主机上的当前目录下的 `mydata` 文件夹到容器内的 `/label-studio/data` 路径,并开放本地端口 8080 给外部访问。 #### 使用 Pip 安装于 Linux 或 macOS 上 另一种常见的安装途径是利用 Python 的包管理工具 pip。这种方法适用于熟悉 Python 开发流程的技术人员。 进入预先配置好的虚拟环境中(如果适用),接着运行如下命令完成软件包的下载与安装: ```bash conda activate label_studio pip install label-studio [^2] ``` 成功安装之后,可以简单地输入 `label-studio start` 命令来启动服务,默认情况下监听本机的 8080 端口。 #### Ubuntu 用户指南 针对特定发行版如 Ubuntu, 可以按照官方提供的指导说明来进行安装过程中的每一步骤[^4]。 #### Anaconda 发行版兼容性 对于偏好 Conda 生态圈而非传统 pip 工具链的人来说,同样可以在激活相应环境后采用上述相同的方法进行安装。 #### Windows 平台注意事项 虽然直接在 Windows 上使用以上两种方案也是可行的,但由于路径处理机制的不同可能需要额外调整挂载卷的具体参数;建议考虑启用 WSL (Windows Subsystem for Linux) 功能或者继续选用 Docker 方案作为首选项。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

一个处女座的程序猿

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值