基于正交投影的点云局部特征

本文探讨了一种基于正交投影的点云局部特征提取方法,通过建立局部参考框架(LRF)来解码点云的几何信息。该方法使用邻域点的法线向量作为LRF的z轴,通过对投影向量赋予权重来增强鲁棒性,以应对噪声和数据分辨率变化。特征表达通过局部深度和多个视点平面捕获,形成3×w×w维的TOLDI特征,提供刚体变换不变性和高效描述。
摘要由CSDN通过智能技术生成

点击上方“小白学视觉”,选择加"星标"或“置顶

重磅干货,第一时间送达

由于点云具有无序,不规则,无拓扑结构的特点,因此可以利用多个二维图像通过三维到二维投影来表示三维点云的几何特征。用图像表示特征可以提供稳定的信息,多个投影角度可以弥补投影过程中造成的信息丢失投影,实现对空间信息的解码。充分利用三维空间信息取决于三维物理坐标系统的建立,但传感器的坐标系统没有抵抗旋转的能力。

本文将介绍了一种基于正交投影的点云局部特征描述方法。

点云的局部特征提取主要分为两类:

非局部参考系(Non-Local Reference Frame,NLRF)特征,主要使用局部几何属性的统计信息作为特征表达式,例如SI和FPFH。由于这种特征会丢弃空间信息,因此存在描述能力不足的缺陷。

相反,局部参考框架(Local Reference Frame,LRF)特征首先在点云的局部表面上建立本征LRF,然后基于LRF解码几何信息,例如PS和RoPS。

LRF是独立于世界坐标系的局部坐标系。一方面,它使基于其解码的特征具有刚体变换不变性;另一方面,它为特征描述提供了足够的空间信息。最近的一项评估研究表明,大多数公共数据库中基于LRF的特征的性能要优于不基于LRF特征。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

小白学视觉

您的赞赏是我们坚持下去的动力~

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值