NLP-文本处理:词性标注【使用成熟的第三方工具包:中文(哈工大LTP)、英文()】【对分词后得到的“词语列表”进行词性标注,词性标注的结果用于依存句法分析、语义角色标注】

词性: 语言中对词的一种分类方法,以语法特征为主要依据、兼顾词汇意义对词进行划分的结果, 常见的词性有14种, 如: 名词, 动词, 形容词等.

顾名思义, 词性标注(Part-Of-Speech tagging, 简称POS)就是标注出一段文本中每个词汇的词性.

举个栗子:

我爱自然语言处理

==>

我/rr, 爱/v, 自然语言/n, 处理/vn

rr: 人称代词
v: 动词
n: 名词
vn: 动名词

词性标注的作用:词性标注以分词为基础, 是对文本语言的另一个角度的理解, 因此也常常成为AI解决NLP领域高阶任务的重要基础环节.

二、使用第三方工具包实现词性标注

1、使用LTP进行词性标注

LTP 使用的是863词性标注集,其各个词性含义如下表。
在这里插入图片描述

2、使用jieba进行中文词性标注

>>> import jieba.posseg as pseg
>>> pseg.lcut("我爱北京天安门") 
[pair('我', 'r'), pair('爱', 'v'), pair('北京', 'ns'), pair('天安门', 'ns')]

# 结果返回一个装有pair元组的列表, 每个pair元组中分别是词汇及其对应的词性, 具体词性含义请参照[附录: jieba词性对照表]()

jieba词性对照表:

- a 形容词  
    - ad 副形词  
    - ag 形容词性语素  
    - an 名形词  
- b 区别词  
- c 连词  
- d 副词  
    - df   
    - dg 副语素  
- e 叹词  
- f 方位词  
- g 语素  
- h 前接成分  
- i 成语 
- j 简称略称  
- k 后接成分  
- l 习用语  
- m 数词  
    - mg 
    - mq 数量词  
- n 名词  
    - ng 名词性语素  
    - nr 人名  
    - nrfg    
    - nrt  
    - ns 地名  
    - nt 机构团体名  
    - nz 其他专名  
- o 拟声词  
- p 介词  
- q 量词  
- r 代词  
    - rg 代词性语素  
    - rr 人称代词  
    - rz 指示代词  
- s 处所词  
- t 时间词  
    - tg 时语素  
- u 助词  
    - ud 结构助词 得
    - ug 时态助词
    - uj 结构助词 的
    - ul 时态助词 了
    - uv 结构助词 地
    - uz 时态助词 着
- v 动词  
    - vd 副动词
    - vg 动词性语素  
    - vi 不及物动词  
    - vn 名动词  
    - vq 
- x 非语素词  
- y 语气词  
- z 状态词  
    - zg 

3、使用hanlp进行中文词性标注

>>> import hanlp
# 加载中文命名实体识别的预训练模型CTB5_POS_RNN_FASTTEXT_ZH
>>> tagger = hanlp.load(hanlp.pretrained.pos.CTB5_POS_RNN_FASTTEXT_ZH)
# 输入是分词结果列表
>>> tagger(['我', '的', '希望', '是', '希望', '和平'])
# 结果返回对应的词性
['PN', 'DEG', 'NN', 'VC', 'VV', 'NN']

4、使用hanlp进行英文词性标注

>>> import hanlp
# 加载英文命名实体识别的预训练模型PTB_POS_RNN_FASTTEXT_EN
>>> tagger = hanlp.load(hanlp.pretrained.pos.PTB_POS_RNN_FASTTEXT_EN)
# 输入是分词结果列表
>>> tagger(['I', 'banked', '2', 'dollars', 'in', 'a', 'bank', '.'])
['PRP', 'VBD', 'CD', 'NNS', 'IN', 'DT', 'NN', '.']

hanlp词性对照表:

【Proper Noun——NR,专有名词】

【Temporal Noun——NT,时间名词】

【Localizer——LC,定位词】如“内”,“左右”

【Pronoun——PN,代词】

【Determiner——DT,限定词】如“这”,“全体”

【Cardinal Number——CD,量词】

【Ordinal Number——OD,次序词】如“第三十一”

【Measure word——M,单位词】如“杯”

【Verb:VA,VC,VE,VV,动词】

【Adverb:AD,副词】如“近”,“极大”

【Preposition:P,介词】如“随着”

【Subordinating conjunctions:CS,从属连词】

【Conjuctions:CC,连词】如“和”

【Particle:DEC,DEG,DEV,DER,AS,SP,ETC,MSP,小品词】如“的话”

【Interjections:IJ,感叹词】如“哈”

【onomatopoeia:ON,拟声词】如“哗啦啦”

【Other Noun-modifier:JJ】如“发稿/JJ 时间/NN”

【Punctuation:PU,标点符号】

【Foreign word:FW,外国词语】如“OK

第三方工具包:
哈工大LTP首页
哈工大LTP4 文档

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值