对话系统-“任务型”多轮对话(二):对话状态追踪(DST)【基于规则;基于模型】【输入:当前意图和槽值对+历史槽值对;输出:State(槽值对集合)或State Vector 】【为DP做数据准备】

该博客探讨了在任务型对话系统中对话状态跟踪(DST)的重要性。DST通过Intent、Slot和History输入,输出State或StateVector。文章介绍了基于规则和模型的DST方法,特别是利用BERT模型来估计每个候选slot-value对的相关性,通过设定阈值(如0.5)来确定最终的State预测。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

在任务型的对话系统中,对话状态跟踪(DST)的目标是从对话历史中监控对话的状态。

DST的输入:Intent+Slot+History;输出:State或State Vector

DST中的State用一组Slot-Value键值对表示;

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

一、基于规则的DST

二、基于模型的DST

At a high level, given a dialog context and a candidate slot- value pair, our model outputs a score indicating the relevance of the candidate.

In other words, the approach is similar to a sentence pair classification task.

  • The first input corresponds to the dialog context, and it consists of the system utterance from the previous turn and the user utterance from the cur- rent turn. The two utterances are separated by a [SEP] token.
  • The second input is the candidate slot-value pair. We simply represent the candidate pair as a sequence of tokens (words or pieces of words).

At each turn, the proposed BERT-based model is used to estimate the probability score of every candidate slot-value pair.After that, only pairs with predicted probability equal to at least 0.5 are chosen as the final prediction for the turn.
在这里插入图片描述
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值