时间序列数据集:UCR Time Series Classification Archive【共128个数据集】

UCR是时间序列数据集,并且每个数据集样本都带有样本类别标签,目前是时间序列挖掘领域重要的开源数据集资源。

UCR Time Series Classification Archive数据集

在2018版的官网页面上可以直接下载整个128个数据集,下图中的红框1可以阅读PDF文档,红框2是下载按钮。

一、Data Format

Each of the data sets comes in two parts, a TRAIN partition and a TEST partition.
For example, for the Fungi data set we have two files, Fungi_TEST.tsv and Fungi_TRAIN.tsv
The two files will be in the same format but are generally of different sizes.
The files are in the standard ASCII format that can be read directly by most tools/languages.
For example, to read the data of Fungi data set into MATLAB, we can type…

>> TRAIN = load(‘Fungi_TRAIN.tsv'); 
>> TEST  = load(‘Fungi_TEST.tsv' ); 

…at the command line.

There is one time series exemplar per row. The first value in the row is the class label (an integer between 1 and the number of classes). The rest of the row are the data sample values. The order of time series exemplar carry no special meaning and is in most cases random. A small number of data sets have class label starting from 0 or -1 by legacy.

在这里插入图片描述

官网首页如下:

IDTypeNameTrainTestClassLengthED (w=0)DTW (learned_w)DTW (w=100)Default rateData donor/editor
1ImageAdiac390391371760.38870.3913 (3)0.39640.9591A. Jalba
2ImageArrowHead3617532510.20000.2000 (0)0.29710.6057L. Ye & E. Keogh
3SpectroBeef303054700.33330.3333 (0)0.36670.8000K. Kemsley & A. Bagnall
4ImageBeetleFly202025120.25000.3000 (7)0.30000.5000J. Hills & A. Bagnall
5ImageBirdChicken202025120.45000.3000 (6)0.25000.5000J. Hills & A. Bagnall
6SensorCar606045770.26670.2333 (1)0.26670.6833J. Gao
7SimulatedCBF3090031280.14780.0044 (11)0.00330.6644N. Saito
8SensorChlorineConcentration467384031660.35000.3500 (0)0.35160.4674L. Li & C. Faloutsos
9SensorCinCECGTorso401380416390.10290.0696 (1)0.34930.7464physionet.org
10SpectroCoffee282822860.00000.0000 (0)0.00000.4643K, Kemsley & A. Bagnall
11DeviceComputers25025027200.42400.3800 (12)0.30000.5000J. Lines & A. Bagnall
12MotionCricketX390390123000.42310.2282 (10)0.24620.8974A. Mueen & E. Keogh
13MotionCricketY390390123000.43330.2410 (17)0.25640.9051A. Mueen & E. Keogh
14MotionCricketZ390390123000.41280.2538 (5)0.24620.8974A. Mueen & E. Keogh
15ImageDiatomSizeReduction1630643450.06540.0654 (0)0.03270.6928ADIAC project
16ImageDistalPhalanxOutlineAgeGroup4001393800.37410.3741 (0)0.23020.5324L. Davis & A. Bagnall
17ImageDistalPhalanxOutlineCorrect6002762800.28260.2754 (1)0.28260.4167L. Davis & A. Bagnall
18ImageDistalPhalanxTW4001396800.36690.3669 (0)0.41010.6978L. Davis & A. Bagnall
19SensorEarthquakes32213925120.28780.2734 (6)0.28060.2518A. Bagnall
20ECGECG2001001002960.12000.1200 (0)0.23000.3600R. Olszewski
21ECGECG5000500450051400.07510.0749 (1)0.07560.4162Y. Chen & E. Keogh
22ECGECGFiveDays2386121360.20330.2033 (0)0.23230.4971physionet.org, Y. Chen & E. Keogh
23DeviceElectricDevices892677117960.44920.3806 (14)0.39880.7463A. Bagnall & J. Lines
24ImageFaceAll5601690141310.28640.1917 (3)0.19230.8302X. Xi & E. Keogh
25ImageFaceFour248843500.21590.1136 (2)0.17050.7045A. Ratanamahatana & E. Keogh
26ImageFacesUCR2002050141310.23070.0878 (12)0.09510.8566X. Xi & E. Keogh
27ImageFiftyWords450455502700.36920.2418 (6)0.30990.8747T. Rath & R. Manmatha
28ImageFish17517574630.21710.1543 (4)0.17710.8343D. Lee
29SensorFordA3601132025000.33480.3091 (1)0.44550.4841A. Bagnall
30SensorFordB363681025000.39380.3926 (1)0.38020.4951A. Bagnall
31MotionGunPoint5015021500.08670.0867 (0)0.09330.4933A. Ratanamahatana & E. Keogh
32SpectroHam10910524310.40000.4000 (0)0.53330.4857K. Kemsley & A. Bagnall
33ImageHandOutlines1000370227090.13780.1378 (0)0.11890.3595L. Davis & A. Bagnall
34MotionHaptics155308510920.62990.5877 (2)0.62340.7825J. Brady
35ImageHerring646425120.48440.4688 (5)0.46880.4063J. Maap & A. Bagnall
36MotionInlineSkate100550718820.65820.6127 (14)0.61640.8164F. Morchen & O. Hoos
37SensorInsectWingbeatSound2201980112560.43840.4152 (1)0.64490.9091Y. Chen & E. Keogh
38SensorItalyPowerDemand6710292240.04470.0447 (0)0.04960.4985JJ van Wijk, E. Keogh & L. Wi
39DeviceLargeKitchenAppliances37537537200.50670.2053 (94)0.20530.6667J. Lines & A. Bagnall
40SensorLightning2606126370.24590.1311 (6)0.13110.4590D. Eads
41SensorLightning7707373190.42470.2877 (5)0.27400.7397D. Eads
42SimulatedMallat552345810240.08570.0857 (0)0.06610.8729M. Jeong & S. Mallat
43SpectroMeat606034480.06670.0667 (0)0.06670.6667K. Kemlsey & A. Bagnall
44ImageMedicalImages38176010990.31580.2526 (20)0.26320.4855J. Felipe & C. Traina
45ImageMiddlePhalanxOutlineAgeGroup4001543800.48050.4805 (0)0.50000.4286L. Davis & A. Bagnall
46ImageMiddlePhalanxOutlineCorrect6002912800.23370.2337 (0)0.30240.4296L. Davis & A. Bagnall
47ImageMiddlePhalanxTW3991546800.48700.4935 (3)0.49350.7143L. Davis & A. Bagnall
48SensorMoteStrain2012522840.12140.1342 (1)0.16530.4609C. Guestrin & J. Sun
49ECGNonInvasiveFetalECGThorax118001965427500.17100.1893 (1)0.20970.9705physionet.org, B. Hu & E. Keogh
50ECGNonInvasiveFetalECGThorax218001965427500.12010.1290 (1)0.13540.9705physionet.org, B. Hu & E. Keogh
51SpectroOliveOil303045700.13330.1333 (0)0.16670.6000K. Kemsley & A. Bagnall
52ImageOSULeaf20024264270.47930.3884 (7)0.40910.7727A. Gandhi
53ImagePhalangesOutlinesCorrect18008582800.23890.2389 (0)0.27160.3869A. Bagnall
54SensorPhoneme21418963910240.89080.7727 (14)0.77160.8871H. Hamooni & A. Mueen
55SensorPlane10510571440.03810.0000 (5)0.00000.8000J. Gao
56ImageProximalPhalanxOutlineAgeGroup4002053800.21460.2146 (0)0.19510.5122L. Davis & A. Bagnall
57ImageProximalPhalanxOutlineCorrect6002912800.19240.2096 (1)0.21650.3162L. Davis & A. Bagnall
58ImageProximalPhalanxTW4002056800.29270.2439 (2)0.24390.6488L. Davis & A. Bagnall
59DeviceRefrigerationDevices37537537200.60530.5600 (8)0.53600.6667J. Lines & A. Bagnall
60DeviceScreenType37537537200.64000.5893 (17)0.60270.6667J. Lines & A. Bagnall
61SimulatedShapeletSim2018025000.46110.3000 (3)0.35000.5000J. Hills & A. Bagnall
62ImageShapesAll600600605120.24830.1980 (4)0.23170.9833J. Hills & A. Bagnall
63DeviceSmallKitchenAppliances37537537200.65870.3280 (15)0.35730.6667J. Lines & A. Bagnall
64SensorSonyAIBORobotSurface1206012700.30450.3045 (0)0.27450.4293D. Vail, M. Velso & E. Keogh
65SensorSonyAIBORobotSurface2279532650.14060.1406 (0)0.16890.3830D. Vail, M. Velso & E. Keogh
66SensorStarLightCurves10008236310240.15120.0947 (16)0.09340.4228P. Protopapas, E. Keogh & L. Wei
67SpectroStrawberry61337022350.05410.0541 (0)0.05950.3568K. Kemsley & A. Bagnall
68ImageSwedishLeaf500625151280.21120.1536 (2)0.20800.9216O. Soderkvist
69ImageSymbols2599563980.10050.0623 (8)0.05030.8211E. Keogh & J. Brady
70SimulatedSyntheticControl3003006600.12000.0167 (6)0.00670.8333R. Alcock & Y. Manolopoulos
71MotionToeSegmentation14022822770.32020.2500 (8)0.22810.4737A. Bagnall, L. Ye & E. Keogh
72MotionToeSegmentation23613023430.19230.0923 (5)0.16150.1846A. Bagnall, L. Ye & E. Keogh
73SensorTrace10010042750.24000.0100 (3)0.00000.7100D. Roverso
74ECGTwoLeadECG2311392820.25290.1317 (4)0.09570.4996physionet.org & E. Keogh
75SimulatedTwoPatterns1000400041280.09320.0015 (4)0.00000.7412P. Geurts
76MotionUWaveGestureLibraryAll896358289450.05190.0343 (4)0.10830.8716A. Bagnall & J. Liu
77MotionUWaveGestureLibraryX896358283150.26070.2267 (4)0.27250.8716J. Liu
78MotionUWaveGestureLibraryY896358283150.33840.3009 (4)0.36600.8716J. Liu
79MotionUWaveGestureLibraryZ896358283150.35040.3222 (6)0.34170.8716J. Liu
80SensorWafer1000616421520.00450.0045 (1)0.02010.1079R. Olszewski
81SpectroWine575422340.38890.3889 (0)0.42590.5000K. Kemsley & A. Bagnall
82ImageWordSynonyms267638252700.38240.2618 (9)0.35110.7806T. Rath & R. Manmatha
83MotionWorms1817759000.54550.4675 (9)0.41560.5714A. Bagnall
84MotionWormsTwoClass1817729000.38960.4156 (7)0.37660.4286A. Bagnall
85ImageYoga300300024260.16970.1560 (7)0.16370.4643L. Wei & E. Keogh
86DeviceACSF11001001014600.46000.3800 (4)0.36000.9000P. Schafer
87SensorAllGestureWiimoteX30070010Vary0.48430.2829 (14)0.28430.9000J. Guna
88SensorAllGestureWiimoteY30070010Vary0.43140.2700 (9)0.27140.9000J. Guna
89SensorAllGestureWiimoteZ30070010Vary0.54570.3486 (11)0.35710.9000J. Guna
90SimulatedBME3015031280.16670.0200 (4)0.10000.6667Joseph Fourier University
91TrafficChinatown203432240.04660.0466 (0)0.04370.2741H.A. Dau
92ImageCrop72001680024460.28830.2883 (0)0.33480.9583F. Petitjean
93SensorDodgerLoopDay788072880.45000.4125 (1)0.50000.8375C.-C. M. Yeh
94SensorDodgerLoopGame2013822880.11590.0725 (1)0.12320.4783C.-C. M. Yeh
95SensorDodgerLoopWeekend2013822880.01450.0217 (1)0.05070.2609C.-C. M. Yeh
96EOGEOGHorizontalSignal3623621212500.58290.5249 (1)0.49720.9144E. Keogh & H. A. Dau
97EOGEOGVerticalSignal3623621212500.55800.5249 (2)0.55250.9144E. Keogh & H. A. Dau
98SpectroEthanolLevel504500417510.72600.7180 (1)0.72400.7480A. Bagnall
99SensorFreezerRegularTrain150285023010.19510.0930 (1)0.10110.5000REFIT project
100SensorFreezerSmallTrain28285023010.32420.3242 (0)0.24110.5000REFIT project
101HRMFungi18186182010.17740.1774 (0)0.16130.8978W. Fonzi
102TrajectoryGestureMidAirD120813026Vary0.42310.3615 (5)0.43080.9615H. A. Dau
103TrajectoryGestureMidAirD220813026Vary0.50770.4000 (6)0.39230.9615H. A. Dau
104TrajectoryGestureMidAirD320813026Vary0.65380.6231 (1)0.67690.9615H. A. Dau
105SensorGesturePebbleZ11321726Vary0.26740.1744 (2)0.20930.8140I. Maglogiannis
106SensorGesturePebbleZ21461586Vary0.32910.2215 (6)0.32910.8101I. Maglogiannis
107MotionGunPointAgeSpan13531621500.10130.0348 (3)0.08230.4937A. Ratanamahatana & E. Keogh
108MotionGunPointMaleVersusFemale13531621500.02530.0253 (0)0.00320.4747A. Ratanamahatana & E. Keogh
109MotionGunPointOldVersusYoung13631521500.04760.0349 (4)0.16190.4762A. Ratanamahatana & E. Keogh
110DeviceHouseTwenty40119220000.33610.0588 (33)0.07560.4202E. Keogh & S. Gharghabi
111EPGInsectEPGRegularTrain6224936010.32130.1727 (11)0.12850.5261E. Keogh & S. Gharghabi
112EPGInsectEPGSmallTrain1724936010.33730.3052 (1)0.26510.5261E. Keogh & S. Gharghabi
113TrafficMelbournePedestrian1194243910240.15250.1845 (1)0.20910.8995H.A. Dau
114ImageMixedShapesRegularTrain5002425510240.10270.0911 (4)0.15840.7303E. Keogh
115ImageMixedShapesSmallTrain1002425510240.16450.1674 (7)0.22020.7303E. Keogh
116SensorPickupGestureWiimoteZ505010Vary0.44000.3400 (17)0.34000.9000J. Guna
117HemodynamicsPigAirwayPressure1042085220000.94230.9038 (1)0.89420.9808M. Guillame-Bert
118HemodynamicsPigArtPressure1042085220000.87500.8029 (1)0.75480.9808M. Guillame-Bert
119HemodynamicsPigCVP1042085220000.91830.8413 (11)0.84620.9808M. Guillame-Bert
120DevicePLAID53753711Vary0.47670.1657 (12)0.16390.8380P. Schafer
121PowerPowerCons18018021440.06670.0778 (3)0.12220.5000EDF R&D, France
122SpectrumRock2050428440.16000.1600 (0)0.40000.5800Y. Zhu
123SpectrumSemgHandGenderCh2300600215000.23830.1550 (1)0.19830.3500C.-C. M. Yeh
124SpectrumSemgHandMovementCh2450450615000.63110.3622 (1)0.41560.8333C.-C. M. Yeh
125SpectrumSemgHandSubjectCh2450450515000.59560.2000 (3)0.27330.8000C.-C. M. Yeh
126SensorShakeGestureWiimoteZ505010Vary0.40000.1600 (6)0.14000.9000J. Guna
127SimulatedSmoothSubspace1501503150.09330.0533 (1)0.17330.6667X. Huang
128SimulatedUMD3614431500.23610.0278 (6)0.00690.6667Joseph Fourier University

数据集下载后文件夹中已经分割了训练和测试集,就是上图中的Train和Test,Class代表了这个数据集包含了几类,Length代表了数据集样本的长度(每个数据集中所有序列都是等长的)。后面的ED代表了欧式距离,DTW就是动态时间规整算法,DTW(learned_w)代表了窗口约束DTW算法(DTW的改进算法)。这几个算法都是空间距离度量算法,下面的误差率是在1-NN分类算法下,结合ED、DTW及其改进距离度量算法的分类误差率。相关文章很多,可以见下面这篇期刊:




参考资料:
UCR Time Series Classification Archive 是个什么数据集?
超全必看!开源时间序列数据集整理

评论 14
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值