一、Spark计算框架介绍
Spark是UC Berkeley AMP lab (加州大学伯克利分校的AMP实验室)所开源的类Hadoop MapReduce的通用并行框架。
Spark拥有Hadoop MapReduce所具有的优点;但不同于MapReduce的是Job中间输出结果可以保存在内存中,从而不再需要读写HDFS,因此Spark能更好地适用于数据挖掘与机器学习等需要迭代的MapReduce的算法。
Spark 是一种与 Hadoop 相似的开源集群计算环境,但是两者之间还存在一些不同之处,这些有用的不同之处使 Spark 在某些工作负载方面表现得更加优越,换句话说,Spark 启用了内存分布数据集,除了能够提供交互式查询外,它还可以优化迭代工作负载。
Spark 是在 Scala 语言中实现的,它将 Scala 用作其应用程序框架。
与 Hadoop 不同,Spark 和 Scala 能够紧密集成,其中的 Scala 可以像操作本地集合对象一样轻松地操作分布式数据集。
Spark底层由Scala和Java编写,现已提供多种 Api 供其它语言来操作Spark,如python、R语言。
二、原生Spark、Pyspark性能对比
1、准备工作
- 下载Scala,并在idea中创建meven工程,导入scala的SDK工具包,并导入相关依赖
- 在python中下载pyspark第三方包(注:pyspark3.×版本无法支持高版本的python,如python3.8,需降低pyspark版本或者降低python版本)
- 准备测试数据集
2、创建测试数据集
hadoop word
spark
flink spark
hive
3、scala编写wordcount
依赖包
<dependencies>
<dependency>
<groupId>org.apache.spark</groupId>
<artifactId>spark-core_2.11</artifactId>
<version>2.1.1</version>
</dependency>
</dependencies>
##导入的依赖版本需要与自己安装的scala版本对应
import org.apache.spark.{
SparkConf, SparkContext}
import java.util.Date
object wordcount {
def main(