一、采样定理概述
采样定理,又称香农采样定理,奈奎斯特采样定理,只要采样频率大于或等于有效信号最高频率的两倍,采样值就可以包含原始信号的所有信息,被采样的信号就可以不失真地还原成原始信号。
采样定理解释
- 采样(信号离散化):指的是理想采样, 即直接记录信号在某时间点的精确取值,所以采样定理只涉及到了从连续信号到离散信号的理想采样过程, 而未涉及到对测量值的量化过程。采样器由电子开关组成,开关每隔Ts秒短暂闭合一次,接通连续信号,实现一次采样。
- 采样频率:指单位时间内的采样点数, 采样是一种周期性的操作, 非周期性采样不在采样定理的范围之内。
- 带宽:是一个信号的一种频域参数,常指信号所占据的频带宽度,简单的说是信号的能量集中的频率范围。至于多少百分比的信号能量集中的范围视为带宽,要根据不同的实际需要了。判断的标准就是,在某个频率范围内的信号频谱已经基本提供了我们需要的信息,那么这个频率范围外的信号频谱就变得可有可无。这个频率范围就是带宽。
- 适用条件:定理仅适用于具有傅里叶变换的一类数学函数,即频率在有限区域以外为零。
- 混叠:如果不能满足采样定理,采样后信号的频率就会重叠,即高于采样频率一半的频率成分将被重建成低于采样频率一半的信号。这种频谱的重叠导致的失真称为混叠,而重建出