数学分析(十七)-多元函数微分学1-可微性1:可微性【f在点P₀处的全增量∆z=A∆x+B∆y+o(ρ);ρ=√[∆x²+∆y²]】、全微分【dz|ᵖ₀=df(x₀,y₀)=A∆x+B∆y】

本文介绍了多元函数微分学中的可微性概念,特别是二元函数在某点的可微性定义。通过定义1阐述了全增量Δz可以用AΔx+BΔy+o(ρ)表示,其中A和B是常数,o(ρ)是高阶无穷小。全微分dz=df(x0,y0)=AΔx+BΔy是线性主部,并在Δx和Δy充分小时,全微分可作为全增量的近似。最后,通过举例说明函数xy在任意点的可微性情况。" 113454361,10535865,Kafka启动异常:从源码分析日志损坏与修复,"['Kafka异常', '日志分析', '源码解析', '数据恢复']
摘要由CSDN通过智能技术生成

与一元函数一样, 在多元函数微分学中, 主要讨论多元函数的可微性及其应用.

本章重点建立二元函数可微性概念, 至于一般 n n n元函数的可微性不难据此相应地给出 (对此, 在第二十三章有更详细的论述).

定义 1

设函数 z = f ( x , y ) z=f(x, y) z=f(x,y) 在点 P 0 ( x 0 , y 0 ) P_{0}\left(x_{0}, y_{0}\right) P0(x0,y0) 的某邻域 U ( P 0 ) U\left(P_{0}\right) U(P0) 上有定义, 对于 U ( P 0 ) U\left(P_{0}\right) U(P0)中的点 P ( x , y ) = ( x 0 + Δ x , y 0 + Δ y ) P(x, y)=\left(x_{0}+\Delta x, y_{0}+\Delta y\right) P(x,y)=(x0+Δx,y0+Δy), 函数 f f f 在点 P 0 P_{0} P0 处的全增量 Δ z \Delta z Δz 可表示为

Δ z = f ( x 0 + Δ x , y 0 + Δ y ) − f ( x 0 , y 0 ) = A Δ x + B Δ y + o ( ρ ) , ( 1 ) \begin{aligned} \Delta z & =f\left(x_{0}+\Delta x, y_{0}+\Delta y\right)-f\left(x_{0}, y_{0}\right) \\ & =A \Delta x+B \Delta y+o(\rho), \quad\quad\quad\quad\quad\quad\quad\quad\quad(1) \end{aligned} Δz=f(x

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值