高等代数(三)-线性方程组01:消 元 法

本文详细介绍了线性方程组的消元法解题步骤,通过实例展示了如何通过初等变换将方程组化为阶梯形,从而找到解。讨论了消元法的基本变换,证明了初等变换保持方程组解的性质,并指出了解的唯一性和无穷解的判断条件。
摘要由CSDN通过智能技术生成

§1 消 元 法
现在来讨论一般线性方程组.所谓一般线性方程组是指形式为
{ a 11 x 1 + a 12 x 2 + ⋯ + a 1 n x n = b 1 , a 21 x 1 + a 22 x 2 + ⋯ + a 2 n x n = b 2 , ⋯ ⋯ ⋯ ⋯ a s 1 x 1 + a s 2 x 2 + ⋯ + a n n x n = b 4 \left\{\begin{array}{c} a_{11} x_{1}+a_{12} x_{2}+\cdots+a_{1 n} x_{n}=b_{1}, \\ a_{21} x_{1}+a_{22} x_{2}+\cdots+a_{2 n} x_{n}=b_{2}, \\ \cdots \cdots \cdots \cdots \\ a_{s 1} x_{1}+a_{s 2} x_{2}+\cdots+a_{n n} x_{n}=b_{4} \end{array}\right. a11x1+a12x2++a1nxn=b1,a21x1+a22x2++a2nxn=b2,⋯⋯⋯⋯as1x1+as2x2++annxn=b4
的方程组, 其中 x 1 , x 2 , ⋯   , x n x_{1}, x_{2}, \cdots, x_{n} x1,x2,,xn 代表 n n n 个未知量, s s s
是方程的个数, a i j ( i = 1 , 2 , ⋯   , s , j = 1 , 2 , ⋯   , n ) a_{i j}(i=1,2, \cdots, s, j=1,2, \cdots, n) aij(i=1,2,,s,j=1,2,,n)
称为方程组的系数, b j ( j = 1 , 2 , ⋯   , s ) b_{j}(j=1,2, \cdots, s) bj(j=1,2,,s) 称为常数项.
方程组中未知量的个数 n n n 与方程的个数 s s s 不一定相等.系数 a i j a_{i j} aij
的第一个指标 i i i 表示它在第 i i i 个方程,第二个指标 j j j 表示它是 x j x_{j} xj
的系数.
所谓方程组 (1) 的一个解, 就是指由 n n n 个数 k 1 , k 2 , ⋯   , k n k_{1}, k_{2}, \cdots, k_{n} k1,k2,,kn
组成的有序数组 ( k 1 , k 2 , ⋯   \left(k_{1}, k_{2}, \cdots\right. (k1,k2,, k n k_{n} kn ), 当
x 1 , x 2 , ⋯   , x n x_{1}, x_{2}, \cdots, x_{n} x1,x2,,xn 分别用 k 1 , k 2 , ⋯   , k n k_{1}, k_{2}, \cdots, k_{n} k1,k2,,kn
代人后, (1) 中每个等式都变成恒等式.方程组 (1)
的解的全体称为它的解集合.解方程组实际上就是找出它全部的解,或者说,求出它的解集合.如果两个方程组有相同的解集合,它们就称为同解的.
显然, 如果知道了一个线性方程组的全部系数和常数项,
那么这个线性方程组就基本上确定了. 确切地说, 线性方程组 (1) 可以用矩阵
( a 11 a 12 ⋯ a 1 n b 1 a 21 a 22 ⋯ a 2 n b 2 ⋮ ⋮ ⋮ ⋮ a 21 a 32 ⋯ a s n b 5 ) \left(\begin{array}{ccccc} a_{11} & a_{12} & \cdots & a_{1 n} & b_{1} \\ a_{21} & a_{22} & \cdots & a_{2 n} & b_{2} \\ \vdots & \vdots & & \vdots & \vdots \\ a_{21} & a_{32} & \cdots & a_{s n} & b_{5} \end{array}\right) a11a21a21a12a22a32a1na2nasnb1b2b5
来表示.实际上,有了 (2)之后,除去代表未知量的文字外,线性方程组 (1)
就确定了,
而采用什么文字来代表未知量当然不是实质性的.在中学所学代数里我们学过用加减消元法和代人消元法解二元、三元线性方程组.实际上,这个方法比用行列式解方程组更具有普遍性.
下面就来介绍如何用一般消元法解一般线性方程组.
先看一个例子.
例如, 解方程组
{ 2 x 1 − x 2 + 3 x 3 = 1 , 4 x 1 + 2 x 2 + 5 x 3 = 4 , 2 x 1 + x 2 + 2 x 3 = 5. \left\{\begin{array}{l} 2 x_{1}-x_{2}+3 x_{3}=1, \\ 4 x_{1}+2 x_{2}+5 x_{3}=4, \\ 2 x_{1}+x_{2}+2 x_{3}=5 . \end{array}\right. 2x1x2+3x3=1,4x1+2x2+5x3=4,2x1+x2+2x3=5.
第二个方程减去第一个方程的 2 倍,第三个方程减去第一个方程, 就变成
{ 2 x 1 − x 2 + 3 x 3 = 1 , 4 x 2 − x 3 = 2 , 2 x 2 − x 3 = 4. \left\{\begin{aligned} 2 x_{1}-x_{2}+3 x_{3} & =1, \\ 4 x_{2}-x_{3} & =2, \\ 2 x_{2}-x_{3} & =4 . \end{aligned}\right. 2x1x2+3x34x2x32x2x3=1,=2,=4.
第二个方程减去第三个方程的 2 倍,把第二、第三两个方程的次序互换, 即得
{ 2 x 1 − x 2 + 3 x 3 = 1 , 2 x 2 − x 3 = 4 , x 3 = − 6. \left\{\begin{aligned} 2 x_{1}-x_{2}+3 x_{3} & =1, \\ 2 x_{2}-x_{3} & =4, \\ x_{3} & =-6 . \end{aligned}\right. 2x1x2+3x32x2x3x3=1,=4,=6.
这样,我们就容易求出方程组的解为 ( 9 , − 1 , − 6 ) (9,-1,-6) (9,1,6).
分析一下消元法, 不难看出, 它实际上是反复地对方程组进行变换,
而所作的变换也只是由以下三种基本的变换所构成:
1. 用一非零的数乘某一方程;
2. 把一个方程的倍数加到另一个方程;
3. 互换两个方程的位置.
于是,我们给出
定义 1 变换 1 , 2 , 3 1,2,3 1,2,3 称为线性方程组的初等变换.
消元的过程就是反复施行初等变换的过程.下面证明,初等变换总是把方程组变成同解的方程组.我们只对第二种初等变换来证明.
对方程组
{ a 11 x 1 + a 12 x 2 + ⋯ + a 1 n x n = b 1 , a 21 x 1 + a 22 x 2 + ⋯ + a 2 n x n = b 2 , ⋯ ⋯ ⋯ ⋯ a n 1 x 1 + a 12 x 2 + ⋯ + a n n x n = b s \left\{\begin{array}{c} a_{11} x_{1}+a_{12} x_{2}+\cdots+a_{1 n} x_{n}=b_{1}, \\ a_{21} x_{1}+a_{22} x_{2}+\cdots+a_{2 n} x_{n}=b_{2}, \\ \cdots \cdots \cdots \cdots \\ a_{n 1} x_{1}+a_{12} x_{2}+\cdots+a_{n n} x_{n}=b_{s} \end{array}\right.

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值