高等代数(六)-线性空间08:线性空间的同构

§8 线性空间的同构
ε 1 , ε 2 , ⋯   , ε n \varepsilon_{1}, \varepsilon_{2}, \cdots, \varepsilon_{n} ε1,ε2,,εn
是线性空间 V V V 的一组基,在这组基下, V V V 中每个向量都有确定的坐标,
而向量的坐标可以盾成 P n P^{n} Pn 的元素. 因此,
向量与它的坐标之间的对应实质上就是 V V V P n P^{n} Pn 的一个映射. 显然,
这个映射是单射与满射, 换句话说, 坐标给出了线性空间 V V V P n P^{n} Pn
的一个双射. 这个对应的重要性表现在它与运算的关系上. 设
α = a 1 ε 1 + a 2 ε 2 + ⋯ + a n ε n , β = b 1 ε 1 + b 2 ε 2 + ⋯ + b n ε n . \boldsymbol{\alpha}=a_{1} \varepsilon_{1}+a_{2} \varepsilon_{2}+\cdots+a_{n} \varepsilon_{n}, \quad \beta=b_{1} \varepsilon_{1}+b_{2} \varepsilon_{2}+\cdots+b_{n} \varepsilon_{n} . α=a1ε1+a2ε2++anεn,β=b1ε1+b2ε2++bnεn.
即向量 α , β \boldsymbol{\alpha}, \boldsymbol{\beta} α,β 的坐标分别是
( a 1 , a 2 , ⋯   , a n ) , ( b 1 , b 2 , ⋯   , b n ) \left(a_{1}, a_{2}, \cdots, a_{n}\right),\left(b_{1}, b_{2}, \cdots, b_{n}\right) (a1,a2,,an),(b1,b2,,bn),
那么
α + β = ( a 1 + b 1 ) ε 1 + ( a 2 + b 2 ) ε 2 + ⋯ + ( a n + b n ) ε n , k α = k a 1 ε 1 + k a 2 ε 2 + ⋯ + k a n ε n . \begin{array}{c} \boldsymbol{\alpha}+\boldsymbol{\beta}=\left(a_{1}+b_{1}\right) \varepsilon_{1}+\left(a_{2}+b_{2}\right) \varepsilon_{2}+\cdots+\left(a_{n}+b_{n}\right) \boldsymbol{\varepsilon}_{n}, \\ k \boldsymbol{\alpha}=k a_{1} \varepsilon_{1}+k a_{2} \varepsilon_{2}+\cdots+k a_{n} \varepsilon_{n} . \end{array} α+β=(a1+b1)ε1+(a2+b2)ε2++(an+bn)εn,kα=ka1ε1+ka2ε2++kanεn.

于是向量 α + β , k α \alpha+\beta, k \alpha α+β,kα 的坐标分别是
( a 1 + b 1 , a 2 + b 2 , ⋯   , a n + b n ) = ( a 1 , a 2 , ⋯   , a n ) + ( b 1 , b 2 , ⋯   , b n ) , ( k a 1 , k a 2 , ⋯   , k a n ) = k ( a 1 , a 2 , ⋯   , a n ) . \begin{array}{c} \left(a_{1}+b_{1}, a_{2}+b_{2}, \cdots, a_{n}+b_{n}\right)=\left(a_{1}, a_{2}, \cdots, a_{n}\right)+\left(b_{1}, b_{2}, \cdots, b_{n}\right), \\ \left(k a_{1}, k a_{2}, \cdots, k a_{n}\right)=k\left(a_{1}, a_{2}, \cdots, a_{n}\right) . \end{array} (a1+b1,a2+b2,,an+bn)=(a1,a2,,an)+(b1,b2,,bn),(ka1,ka2,,kan)=k(a1,a2,,an).

以上的式子说明在向量用坐标表示之后,
它们的运算就可以归结为它们坐标的运算.因而线性空间 V V V
的讨论也就可以归结为 P n P^{n} Pn 的讨论. 为了确切地说明这一点,
先引人下列定义.
定义 11 数域 P P P 上两个线性空间 V V V V ′ V^{\prime} V 称为同构的, 如果由
V V V V ′ V^{\prime} V 有一个双射 σ \sigma σ, 具有以下性质:
1)
σ ( α + β ) = σ ( α ) + σ ( β ) \sigma(\boldsymbol{\alpha}+\boldsymbol{\beta})=\sigma(\boldsymbol{\alpha})+\sigma(\boldsymbol{\beta}) σ(α+β)=σ(α)+σ(β);
2) σ ( k α ) = k σ ( α ) \sigma(k \boldsymbol{\alpha})=k \sigma(\boldsymbol{\alpha}) σ(kα)=(α),
其中 α , β \boldsymbol{\alpha}, \boldsymbol{\beta} α,β V V V 中任意向量, k k k
P P P 中任意数. 这样的映射 σ \sigma σ 称为同构映射.
前面的讨论说明在 n n n 维线性空间 V V V 中取定一组基后,
向量与它的坐标之间的对应就是 V V V P n P^{n} Pn 的一个同构映射. 因而, 数域
P P P 上任一个 n n n 维线性空间都与 P n P^{n} Pn 同构.
由定义可以看出,同构映射 σ \sigma σ 具有下列基本性质:
1.
σ ( 0 ) = 0 , σ ( − α ) = − σ ( α ) \sigma(\boldsymbol{0})=\mathbf{0}, \sigma(-\boldsymbol{\alpha})=-\sigma(\boldsymbol{\alpha}) σ(0)=0,σ(α)=σ(α).
在定义 11 的 2 ) 中分别取 k = 0 , − 1 k=0,-1 k=0,1 即得.
2.
σ ( k 1 α 1 + k 2 α 2 + ⋯ + k 1 α r ) = k 1 σ ( α 1 ) + k 2 σ ( α 2 ) + ⋯ + k 1 σ ( α t ) \sigma\left(k_{1} \boldsymbol{\alpha}_{1}+k_{2} \boldsymbol{\alpha}_{2}+\cdots+k_{1} \boldsymbol{\alpha}_{r}\right)=k_{1} \boldsymbol{\sigma}\left(\boldsymbol{\alpha}_{1}\right)+k_{2} \sigma\left(\boldsymbol{\alpha}_{2}\right)+\cdots+k_{1} \sigma\left(\boldsymbol{\alpha}_{t}\right) σ(k1α1+k2α2++k1αr)=k1σ(α1)+k2σ(α2)++k1σ(αt).
这是 1) 与 2) 结合的结果. I
3. V V V 中向量组
α 1 , α 2 , ⋯   , α \boldsymbol{\alpha}_{1}, \boldsymbol{\alpha}_{2}, \cdots, \boldsymbol{\alpha} α1,α2,,α,
线性相关的充分必要条件是, 它们的像
σ ( α 1 ) \sigma\left(\boldsymbol{\alpha}_{1}\right) σ(α1),
σ ( α 2 ) , ⋯   , σ ( α t ) \sigma\left(\boldsymbol{\alpha}_{2}\right), \cdots, \sigma\left(\boldsymbol{\alpha}_{t}\right) σ(α2),,σ(αt)
线性相关.
因为由
k 1 α 1 + k 2 α 2 + ⋯ + k r α r = 0 k_{1} \boldsymbol{\alpha}_{1}+k_{2} \boldsymbol{\alpha}_{2}+\cdots+k_{r} \boldsymbol{\alpha}_{r}=\mathbf{0} k1α1+k2α2++krαr=0
可得
k 1 σ ( α 1 ) + k 2 σ ( α 2 ) + ⋯ + k r σ ( α r ) = 0. k_{1} \sigma\left(\boldsymbol{\alpha}_{1}\right)+k_{2} \sigma\left(\boldsymbol{\alpha}_{2}\right)+\cdots+k_{r} \boldsymbol{\sigma}\left(\boldsymbol{\alpha}_{r}\right)=\mathbf{0} . k1σ(α1)+k2σ(α2)++krσ(αr)=0.
反过来,由
k 1 σ ( α 1 ) + k 2 σ ( α 2 ) + ⋯ + k t σ ( α r ) = 0 k_{1} \sigma\left(\boldsymbol{\alpha}_{1}\right)+k_{2} \sigma\left(\boldsymbol{\alpha}_{2}\right)+\cdots+k_{t} \sigma\left(\boldsymbol{\alpha}_{r}\right)=\mathbf{0} k1σ(α1)+k2σ(α2)++k

  • 21
    点赞
  • 23
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值