高等代数(四)-矩阵01:矩阵概念的一些背景

§ 1 矩阵概念的一些背景
在线性方程组的讨论中我们看到,
线性方程组的一些重要性质反映在它的系数矩阵和增广矩阵的性质上,并且解方程组的过程也表现为变换这些矩阵的过程.
除线性方程组之外, 还有大量的各种各样的问题也都提出矩阵的概念,
并且这些问题的研究常常反映为有关矩阵的某些方面的研究,甚至于有些性质完全不同的、表面上完全没有联系的问题,归结成矩阵问题以后却是相同的.这就使矩阵成为数学中一个极其重要的应用广泛的概念,
因而也就使矩阵成为代数特别是线性代数的一个主要研究对象.这一章的目的是引人矩阵的运算,
并讨论它们的一些基本性质.
为了使读者对矩阵的概念以及下面要讨论的问题的背景有些了解,我们来介绍一些提出矩阵概念的问题.
当然, 由于篇幅和目前知识的限制, 介绍的方面有很大局限性.
1. 在解析几何中考虑坐标变换时,如果只考虑坐标系的转轴
(逆时针方向转轴),那么平面直角坐标变换的公式为
{ x = x ′ cos ⁡ θ − y ′ sin ⁡ θ , y = x ′ sin ⁡ θ + y ′ cos ⁡ θ , \left\{\begin{array}{l} x=x^{\prime} \cos \theta-y^{\prime} \sin \theta, \\ y=x^{\prime} \sin \theta+y^{\prime} \cos \theta, \end{array}\right. { x=xcosθysinθ,y=xsinθ+ycosθ,
其中 θ \theta θ x x x 轴与 x ′ x^{\prime} x 轴的夹角.
显然,新旧坐标之间的关系,完全可以通过公式中系数所排成的 2 × 2 2 \times 2 2×2 矩阵
( cos ⁡ θ − sin ⁡ θ sin ⁡ θ cos ⁡ θ ) \left(\begin{array}{cc} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{array}\right) (cosθsinθsinθcosθ)
表示出来. 通常,矩阵 (2) 称为坐标变换 (1) 的矩阵. 在空间的情形,
保持原点不动的仿射坐标系的变换有公式
{ x = a 11 x ′ + a 12 y ′ + a 13 z ′ , y = a 21 x ′ + a 22 y ′ + a 23 z ′ , z = a 31 x ′ + a 32 y ′ + a 33 z ′ . \left\{\begin{array}{l} x=a_{11} x^{\prime}+a_{12} y^{\prime}+a_{13} z^{\prime}, \\ y=a_{21} x^{\prime}+a_{22} y^{\prime}+a_{23} z^{\prime}, \\ z=a_{31} x^{\prime}+a_{32} y^{\prime}+a_{33} z^{\prime} . \end{array}\right. x=a11x+a12y+a13z

  • 15
    点赞
  • 23
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值