高等代数(八)-线性变换03:不变因子

本文介绍了λ-矩阵的不变因子和标准形的概念,证明了等价的λ-矩阵具有相同的秩和行列式因子,探讨了行列式因子的性质,并展示了如何通过行列式因子计算λ-矩阵的不变因子。最后,讨论了矩阵可逆性的等价条件及其与初等矩阵的关系。
摘要由CSDN通过智能技术生成

§ 3 不变因子
现在来证明, λ \lambda λ-矩阵的标准形是唯一的. 为此, 我们引人
定义 5 设 λ \lambda λ-矩阵 A ( λ ) \boldsymbol{A}(\lambda) A(λ) 的秩为 r r r,
对于正整数 k ( 1 ⩽ k ⩽ r ) , A ( λ ) k(1 \leqslant k \leqslant r), \boldsymbol{A}(\lambda) k(1kr),A(λ)
中必有非零的 k k k阶子式, A ( λ ) \boldsymbol{A}(\lambda) A(λ) 中全部 k k k
阶子式的首项系数为 1 的最大公因式 D k ( λ ) D_{k}(\lambda) Dk(λ) 称为
A ˙ ( λ ) \dot{\boldsymbol{A}}(\lambda) A˙(λ) k k k 阶行列式因子.
由定义可知, 对于秩为 r r r λ \lambda λ-矩阵, 行列式因子一共有 r r r 个.
行列式因子的意义就在于,它在初等变换下是不变的.
定理 3 等价的 λ \lambda λ-矩阵具有相同的秩与相同的各阶行列式因子.
证明 我们只需要证明, λ \lambda λ-矩阵经过一次初等变换,
秩与行列式因子是不变的.
λ \lambda λ-矩阵 A ( λ ) \boldsymbol{A}(\lambda) A(λ) 经过一次初等行变换变成
B ( λ ) , f ( λ ) \boldsymbol{B}(\lambda), f(\lambda) B(λ),f(λ) g ( λ ) g(\lambda) g(λ) 分别是
A ( λ ) \boldsymbol{A}(\lambda) A(λ) B ( λ ) \boldsymbol{B}(\lambda) B(λ) k k k
阶行列式因子. 我们证明 f = g f=g f=g. 下面分三种情形讨论:
1. A ( λ ) \boldsymbol{A}(\lambda) A(λ) 经第一种初等行变换变成
B ( λ ) \boldsymbol{B}(\lambda) B(λ). 这时, B ( λ ) \boldsymbol{B}(\lambda) B(λ) 的每个 k k k
阶子式或者等于 A ( λ ) \boldsymbol{A}(\lambda) A(λ) 的某个 k k k 阶子式, 或者与
A ( λ ) \boldsymbol{A}(\lambda) A(λ) 的某个 k k k 阶子式反号, 因此 f ( λ ) f(\lambda) f(λ)
B ( λ ) \boldsymbol{B}(\lambda) B(λ) k k k 阶子式的公因式, 从而
f ( λ ) ∣ g ( λ ) f(\lambda) \mid g(\lambda) f(λ)g(λ).
2. A ( λ ) \boldsymbol{A}(\lambda) A(λ) 经第二种初等行变换变成
B ( λ ) \boldsymbol{B}(\lambda) B(λ). 这时, B ( λ ) \boldsymbol{B}(\lambda) B(λ) 的每个 k k k
阶子式或者等于 A ( λ ) \boldsymbol{A}(\lambda) A(λ) 的某个 k k k 阶子式, 或者等于
A ( λ ) \boldsymbol{A}(\lambda) A(λ) 的某个 k k k 阶子式的 c c c 倍. 因此 f ( λ ) f(\lambda) f(λ)
B ( λ ) \boldsymbol{B}(\lambda) B(λ) k k k阶子式的公因式, 从而
f ( λ ) ∣ g ( λ ) f(\lambda) \mid g(\lambda) f(λ)g(λ).
3. A ( λ ) \boldsymbol{A}(\lambda) A(λ) 经第三种初等行变换变成

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值