高等代数(八)-线性变换07:矩阵的有理标准形

本文探讨了数域P上矩阵的有理标准形,证明了任何矩阵可相似于一个有理标准形,并给出了其在线性变换领域的应用。通过不变因子和友矩阵的概念,详细阐述了如何构造和确定有理标准形,同时提供了相关例题和习题以加深理解。
摘要由CSDN通过智能技术生成

§ 7 矩阵的有理标准形
前一节中证明了复数域上任一矩阵 A \boldsymbol{A} A
可相似于一个若尔当形矩阵, 这一节将对任意数域 P P P 来讨论类似的问题.
我们证明 P P P 上任一矩阵必相似于一个有理标准形矩阵.
定义 8 对数域 P P P 上的一个多项式
d ˙ ( λ ˙ ) = λ n ˙ + a 1 λ n − 1 + ⋯ + a n , \dot{d}(\dot{\lambda})=\dot{\lambda^{n}}+a_{1} \lambda^{n-1}+\cdots+a_{n}, d˙(λ˙)=λn˙+a1λn1++an,
称矩阵
A = ( 0 0 ⋯ 0 − a n 1 0 ⋯ 0 − a n − 1 0 1 ⋯ 0 − a n − 2 ⋮ ⋮ ⋮ ⋮ 0 0 ⋯ 1 − a 1 ) \boldsymbol{A}=\left(\begin{array}{ccccc} 0 & 0 & \cdots & 0 & -a_{n} \\ 1 & 0 & \cdots & 0 & -a_{n-1} \\ 0 & 1 & \cdots & 0 & -a_{n-2} \\ \vdots & \vdots & & \vdots & \vdots \\ 0 & 0 & \cdots & 1 & -a_{1} \end{array}\right) A= 010000100001anan1an2a1
为多项式 d ( λ ) d(\lambda) d(λ) 的友矩阵.
容易验证, A \boldsymbol{A} A 的 (即特征矩阵
λ E − A \lambda \boldsymbol{E}-\boldsymbol{A} λEA 的) 不变因子是
1 , 1 , ⋯   , ⏟ n = 1 ↑ , d ( λ ) \underbrace{1,1, \cdots,}_{n=1 \uparrow}, d(\lambda) n=1 1,1,,,d(λ) (见习题 3 ).定义
9 准对角矩阵
A = ( A 1 A 2 ⋱ A ∗ ) , \boldsymbol{A}=\left(\begin{array}{llll} \boldsymbol{A}_{1} & & & \\ & \boldsymbol{A}_{2} & & \\ & & \ddots & \\ & & & \boldsymbol{A}_{*} \end{array}\right), A= A1A2A ,
其中 A i A_{i} Ai 分别是数域 P P P 上某些多项式
d i ( λ ) ( i = 1 , 2 , ⋯   , s ) d_{i}(\lambda)(i=1,2, \cdots, s) di(λ)(i=1,2,,s) 的友矩阵, 且满足 d i ( λ ) d_{i}(\lambda) di(λ)
∣ d 2 ( λ ) ∣ ⋯ ∣ d 1 ( λ ) \left|d_{2}(\lambda)\right| \cdots \mid d_{1}(\lambda) d2(λ)d1(λ), 称为 P P P
上的有理标准形矩阵.
引理 (2) 中矩阵 A \boldsymbol{A} A 的不变因子为
1 , 1 , ⋯   , 1 , d 1 ( λ ) , d 2 ( λ ) , ⋯   , d , ( λ ) 1,1, \cdots, 1, d_{1}(\lambda), d_{2}(\lambda), \cdots, d_{,}(\lambda) 1,1,,1,d1(λ),d2(λ),,d,(λ),
其中 1 的个数等于
d 1 ( λ ) , d 2 ( λ ) , ⋯   , d s ( λ ) d_{1}(\lambda), d_{2}(\lambda), \cdots, d_{s}(\lambda) d1(λ),d2(λ),,ds(λ) 的次数之和减去
s s s.
证明
λ E − A = ( λ E 1 − A 1 λ E 2 − A 2 ⋱ λ E , − A 4 ) . \lambda E-A=\left(\begin{array}{llll} \lambda E_{1}-\boldsymbol{A}_{1} & & & \\ & \lambda \boldsymbol{E}_{2}-\boldsymbol{A}_{2} & & \\ & & \ddots & \\ & & & \lambda \boldsymbol{E}_{,}-\boldsymbol{A}_{4} \end{array}\right) . λEA= λE1A1λE2A2λE,A4 .
由于每个 λ E i − A i \lambda E_{i}-A_{i} λEiAi 的不变因子为
1 , ⋯   , 1 , d i ( λ ) 1, \cdots, 1, d_{i}(\lambda) 1,,1,di(λ), 故可用初等变换把它变成
( 1 1 ⋱ d i ( λ ) ) , \left(\begin{array}{llll} 1 & & & \\ & 1 & & \\ & & \ddots & \\ & & & d_{i}(\lambda) \end{array}\right), 1

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值