§ 2.7 § 2.7 §2.7 分布的其他特征数
数学期望和方差是随机变量最重要的两个特征数. 此外,
随机变量还有一些其他的特征数, 以下逐一给出它们的定义, 且解释它们的含义.
2.7.1 k k k 阶矩
定义 2.7.1 设 X X X 为随机变量, k k k 为正整数.
如果以下的数学期望都存在,则称
μ k = E ( X k ) \mu_{k}=E\left(X^{k}\right) μk=E(Xk)
为 X X X 的 k k k 阶原点矩. 称
ν k = E ( X − E ( X ) ) k \nu_{k}=E(X-E(X))^{k} νk=E(X−E(X))k
为 X X X 的 k k k 阶中心矩.
显然, 一阶原点矩就是数学期望, 二阶中心矩就是方差. 由于
∣ X ∣ k − 1 ⩽ ∣ X ∣ k + 1 |X|^{k-1} \leqslant|X|^{k}+1 ∣X∣k−1⩽∣X∣k+1, 故 k k k阶矩存在时, k − 1 k-1 k−1 阶矩也存在,
从而低于 k k k 的各阶矩都存在.
中心矩和原点矩之间有一个简单的关系, 事实上
ν k = E ( X − E ( X ) ) k = E ( X − μ 1 ) k = ∑ i = 0 k ( k i ) μ i ( − μ 1 ) k − i , \nu_{k}=E(X-E(X))^{k}=E\left(X-\mu_{1}\right)^{k}=\sum_{i=0}^{k}\left(\begin{array}{l} k \\ i \end{array}\right) \mu_{i}\left(-\mu_{1}\right)^{k-i}, νk=E(X−E(X))k=E(X−μ1)k=i=0∑k(ki)μi(−μ1)k−i,
故前四阶中心矩可分别用原点矩表示如下:
ν 1 = 0 , ν 2 = μ 2 − μ 1 2 , ν 3 = μ 3 − 3 μ 2 μ 1 + 2 μ 1 3 , ν 4 = μ 4 − 4 μ 3 μ 1 + 6 μ 2 μ 1 2 − 3 μ 1 4 . \begin{array}{l} \nu_{1}=0, \\ \nu_{2}=\mu_{2}-\mu_{1}^{2}, \\ \nu_{3}=\mu_{3}-3 \mu_{2} \mu_{1}+2 \mu_{1}^{3}, \\ \nu_{4}=\mu_{4}-4 \mu_{3} \mu_{1}+6 \mu_{2} \mu_{1}^{2}-3 \mu_{1}^{4} . \end{array} ν1=0,ν2=μ2−μ12,ν3=μ3−3μ2μ1+2μ13,ν4=μ4−4μ3μ1+6μ2μ12−3μ14.
例 2.7.1 设随机变量 X ∼ N ( 0 , σ 2 ) X \sim N\left(0, \sigma^{2}\right) X∼N(0,σ2), 则
μ k = E ( X k ) = 1 2 π σ ∫ − ∞ ∞ x k exp { − x 2 2 σ 2 } d x = σ k 2 π ∫ − ∞ ∞ u k exp { − u 2 2 } d u . \mu_{k}=E\left(X^{k}\right)=\frac{1}{\sqrt{2 \pi} \sigma} \int_{-\infty}^{\infty} x^{k} \exp \left\{-\frac{x^{2}}{2 \sigma^{2}}\right\} \mathrm{d} x=\frac{\sigma^{k}}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} u^{k} \exp \left\{-\frac{u^{2}}{2}\right\} \mathrm{d} u . μk=E(Xk)=2πσ1∫−∞∞xkexp{
−2σ2x2}dx=2πσk∫−∞∞ukexp{
−2u2}du.
在 k k k 为奇数时, 上述被积函数是奇函数, 故
μ k = 0 , k = 1 , 3 , 5 , ⋯ . \mu_{k}=0, \quad k=1,3,5, \cdots . μk=0,k=1,3,5,⋯.
在 k k k 为偶数时, 上述被积函数是偶函数,再利用变换 z = u 2 / 2 z=u^{2} / 2 z=u2/2, 可得
μ k = 2 π σ k 2 ( k − 1 ) / 2 ∫ 0 ∞ z ( k − 1 ) / 2 e − z d z = 2 π σ k 2 ( k − 1 ) / 2 Γ ( k + 1 2 ) = σ k ( k − 1 ) ( k − 3 ) ⋯ 1. k = 2 , 4 , 6 , ⋯ . \begin{array}{l} \mu_{k}=\sqrt{\frac{2}{\pi}} \sigma^{k} 2^{(k-1) / 2} \int_{0}^{\infty} z^{(k-1) / 2} \mathrm{e}^{-z} \mathrm{~d} z=\sqrt{\frac{2}{\pi}} \sigma^{k} 2^{(k-1) / 2} \Gamma\left(\frac{k+1}{2}\right) \\ =\sigma^{k}(k-1)(k-3) \cdots 1 . \quad k=2,4,6, \cdots . \\ \end{array} μk=π2σk2(k−1)/2∫0∞z(k−1)/2e−z dz=π2σk2(k−1)/2Γ(2k+1)=σk(k−1)(k−3)⋯1.k=2,4,6,⋯.
故 N ( 0 , σ 2 ) N\left(0, \sigma^{2}\right) N(0,σ2) 分布的前四阶原点矩为
μ 1 = 0 , μ 2 = σ 2 , μ 3 = 0 , μ 4 = 3 σ 4 . \mu_{1}=0, \quad \mu_{2}=\sigma^{2}, \quad \mu_{3}=0, \quad \mu_{4}=3 \sigma^{4} . μ1=0,μ2=σ2,μ3=0,μ4=3σ4.
又因为 E ( X ) = 0 E(X)=0 E(X)=0, 所以有原点矩等于中心矩, 即
μ k = ν k , k = 1 , 2 , ⋯ \mu_{k}=\nu_{k}, k=1,2, \cdots μk=νk,k=1,2,⋯.
2.7.2 变异系数
方差(或标准差)
反映了随机变量取值的波动程度,但在比较两个随机变量的波动大小时,
如果仅看方差 (或标准差) 的大小有时会产生不合理的现象. 这有两个原因: (1)
随机变量的取值有量纲,不同量纲的随机变量用其方差(或标准差)去比较它们的波动大小不太合理.
(2) 在取值的量纲相同的情况下,
取值的大小有一个相对性问题,取值较大的随机变量的方差 (或标准差)
也允许大一些.
所以要比较两个随机变量的波动大小时,
在有些场合使用以下定义的变异系数来进行比较,更具可比性.
定义 2.7.2 设随机变量 X X X 的二阶矩存在,则称比值
C v ( X ) = Var ( X ) E ( X ) = σ ( X ) E ( X ) C_{v}(X)=\frac{\sqrt{\operatorname{Var}(X)}}{E(X)}=\frac{\sigma(X)}{E(X)} Cv(X)=E(X)Var(X)=E(X)σ(X)
为 X X X 的变异系数.
因为标准差的量纲与数学期望的量纲是一致的, 所以变异系数是一个无量纲的量,
从而消除量纲对波动的影响.
例 2.7.2 用 X X X 表示某种同龄树的高度,其量纲是米 ( m ) (\mathrm{m}) (m), 用 Y Y Y
表示某年龄段儿童的身高, 其量纲也是米 ( m ) (\mathrm{m}) (m). 设
E ( X ) = 10 , Var ( X ) = 1 , E ( Y ) = 1 , Var ( Y ) = 0.04 E(X)=10, \operatorname{Var}(X)=1, E(Y)=1, \operatorname{Var}(Y)=0.04 E(X)=10,Var(X)=1,E(Y)=1,Var(Y)=0.04,
是否可以从 Var ( X ) =