复变函数论(一)-复数与复变函数01:复数03【复数的模与辐角】

本文详细介绍了复数的模和辐角的概念,包括模的几何意义、三角不等式、辐角的定义及其主值。通过实例展示了如何求解复数的模和辐角,并解释了它们在几何和物理问题中的应用,如流体速度的大小和方向。此外,还探讨了复数的三角形式、指数形式和代数形式之间的转换,以及复数乘法中旋转的几何意义。
摘要由CSDN通过智能技术生成

表示复数 z z z 的位置, 也可以借助于点 z z z 的极坐标 r r r θ \theta θ 来确定
(图 1.1). 这里使原点与直角坐标系的原点重合, 极轴与正实轴重合.
下面我们用向量 O z → \overrightarrow{O z} Oz 来表示复数 z = x + i y z=x+\mathrm{i} y z=x+iy,
其中 x , y x, y x,y 顺次等于 O z → \overrightarrow{O z} Oz 沿 x x x 轴与 y y y 轴的分量.
向量 O z → \overrightarrow{O z} Oz 的长度称为复数 z z z 的模或绝对值, 以符号
∣ z ∣ |z| z r r r 表示, 因而有
r = ∣ z ∣ = x 2 + y 2 ⩾ 0 , r=|z|=\sqrt{x^{2}+y^{2}} \geqslant 0, r=z=x2+y2 0,
且. ∣ z ∣ = 0 |z|=0 z=0 的充要条件是 z = 0 z=0 z=0.
这里引进的模的概念与实数的绝对值的概念是一致的. 由于复数 z z z 的模 ∣ z ∣ |z| z
是非负实数, 所以能够比较大小. 同样,复数的实、虚部也能够比较大小.
根据图 1.1 ,我们有不等式
∣ x ∣ ⩽ ∣ z ∣ , ∣ y ∣ ⩽ ∣ z ∣ , ∣ z ∣ ⩽ ∣ x ∣ + ∣ y ∣ , − ∣ z ∣ ⩽ Re ⁡ z ⩽ ∣ z ∣ , − ∣ z ∣ ⩽ Im ⁡ z ⩽ ∣ z ∣ . \begin{array}{l} |x| \leqslant|z|, \quad|y| \leqslant|z|, \quad|z| \leqslant|x|+|y|, \\ -|z| \leqslant \operatorname{Re} z \leqslant|z|, \quad-|z| \leqslant \operatorname{Im} z \leqslant|z| . \end{array} xz,yz,zx+y,zRezz,zImzz∣.


根据图 1.2 ,我们有不等式
∣ z 1 + z 2 ∣ ⩽ ∣ z 1 ∣ + ∣ z 2 ∣ \left|z_{1}+z_{2}\right| \leqslant\left|z_{1}\right|+\left|z_{2}\right| z1+z2z1+z2
(三角形两边之和大于第三边).
它称为三角不等式.
此外, 根据图 1.3 ,我们还有不等式
∣ ∣ z 1 ∣ − ∣ z 2 ∣ ∣ ⩽ ∣ z 1 − z 2 ∣ || z_{1}|-| z_{2}|| \leqslant\left|z_{1}-z_{2}\right| ∣∣z1z2∣∣z1z2
(三角形两边之差小于第三边).
(1.2) 及 (1.3) 中等号成立的几何意义是:复数 z 1 , z 2 z_{1}, z_{2} z1,z2
所表示的两个向量共线且同向.即
z 1 ≠ 0 , z 2 ≠ 0  时,  z 1 = k z 2 ( k > 0 ) .  z_{1} \neq 0, z_{2} \neq 0 \text { 时, } z_{1}=k z_{2}(k>0) \text {. } z1=0,z2=0 z1=kz2(k>0)

用数学归纳法可得推广了的三角不等式
∣ z 1 + z 2 + ⋯ + z n ∣ ⩽ ∣ z 1 ∣ + ∣ z 2 ∣ + ⋯ + ∣ z n ∣ . \left|z_{1}+z_{2}+\cdots+z_{n}\right| \leqslant\left|z_{1}\right|+\left|z_{2}\right|+\cdots+\left|z_{n}\right| . z1+z2++znz1+z2++zn.
由图 1.3 可见, ∣ z 1 − z 2 ∣ \left|z_{1}-z_{2}\right| z1z2 表示点 z 1 z_{1} z1 与点 z 2 z_{2} z2
的距离, 记为
d ( z 1 , z 2 ) = ∣ z 1 − z 2 ∣ . d\left(z_{1}, z_{2}\right)=\left|z_{1}-z_{2}\right| . d(z1,z2)=z1z2.
两复数差的模的这个几何意义是非常重要的.
它还可以借助解析几何中两点间的距离公式用解析方法得出:
∣ z 1 − z 2 ∣ = ∣ ( x 1 + i y 1 ) − ( x 2 + i y 2 ) ∣ = ( x 1 − x 2 ) 2 + ( y 1 − y 2 ) 2 . \begin{aligned} \left|z_{1}-z_{2}\right| & =\left|\left(x_{1}+\mathrm{i} y_{1}\right)-\left(x_{2}+\mathrm{i} y_{2}\right)\right| \\ & =\sqrt{\left(x_{1}-x_{2}\right)^{2}+\left(y_{1}-y_{2}\right)^{2}} . \end{aligned} z1z2=(x1+iy1)(x2+iy2)=(x1x2)2+(y1y2)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值