复变函数论2-解析函数3-初等多值函数1-1:单叶性区域【设f(z)在区域D内有定义,且对D内任意不同两点z₁及z₂都有f(z₁)≠f(z₂),则称f(z)在D内是单叶的,区域D为f的单叶性区域】

本文深入探讨复变函数中的多值性问题,特别是通过限制辐角和割破平面的方法来研究幂函数、根式函数、指数函数和对数函数的单值解析分支。定义了单叶性区域的概念,即函数在该区域内对任意不同两点的值都不相等,确保了函数的一一对应性。
摘要由CSDN通过智能技术生成

本节将要看到, 许多复变量的初等函数都是多值的,在复数域中对多值函数的研究具有特殊重要的意义.因为只有在这样的讨论中才能看出函数多值性的本质.

函数多值性源于辐角函数的多值性.

本节的主要内容是介绍以下函数的映射性质:

  • 幂函数
  • 根式函数;
  • 指数函数
  • 对数函数;

主要是采用限制辐角割破平面的方法,来分出根式函数与对数函数的单值解析分支.

最后, 对反三角函数及一般幂函数作简单介绍.

为了下面讨论的需要,我们先给出如下定义.

定义 2.8

设函数 f ( z ) f(z) f(z) 在区域 D D D 内有定义, 且对 D D D 内任意不同的两点 z 1 z_{1} z

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值