前面我们讨论了 根式函数 w = z n w=\sqrt[n]{z} w=nz 与对数函数 w = L n z w=\mathrm{Ln} z w=Lnz:
- 它们的支点都是二个有限支点 z = 0 z=0 z=0 和无穷远点 z = ∞ z=\infty z=∞.
- 其支割线可以是从0 到 ∞ \infty ∞ 的一条射线 (如包含原点的负实轴), 这与限制变点 z z z的辐角范围 (如 − π < arg z < π -\pi<\arg z<\pi −π<argz<π ) 是一致的. 从而, 在 z z z平面上以此割线为边界的区域 G G G 内, 它们都能分出单值解析分支.
但对具有多个有限支点的多值函数, 我们就不便采取限制辐角范围的办法,而是首先求出该函数的一切支点, 然后适当连接支点以割破 z z z 平面. 于是, 在 z z z 平面上以此割线为边界的区域 G G G 内就能分出该函数的单值解析分支. 因为,在 G G G 内变点 z z z 不能穿过支割线, 也就不能单独绕任一个支点转一整周,函数就不可能在 G G G 内同一点取不同的值了.
讨论函数
w = f ( z ) = P ( z ) n w=f(z)=\sqrt[n]{P(z)} w=f(z)=nP(z)
的支点,其中 P ( z ) P(z) P(z) 是任意的 N N N 次多项式,
P ( z ) = A ( z − a 1 ) a 1 ⋯ ( z − a m ) a m , ( 2.27 ) P(z)=A\left(z-a_{1}\right)^{a_{1}} \cdots\left(z-a_{m}\right)^{a_{m}}, \quad\quad(2.27) P(z)=A(z−a1)a1⋯(z−am)am,(2.27)
a 1 , a 2 , ⋯ , a m a_{1}, a_{2}, \cdots, a_{m} a1,a2,⋯,am 是 P ( z ) P(z) P(z) 的一切相异零点. α 1 , α 2 , ⋯ , α m \alpha_{1}, \alpha_{2}, \cdots, \alpha_{m} α1,α2,⋯,αm 分别是它们的重数, 满足
α 1 + α 2 + ⋯ + α m = N . \alpha_{1}+\alpha_{2}+\cdots+\alpha_{m}=N . α1+α2+⋯+αm=N.
例 2.24
考察下列函数有哪些支点:
(1) f ( z ) = z ( 1 − z ) f(z)=\sqrt{z(1-z)} f(z)=