复变函数论2-解析函数3-初等多值函数5-具有多个有限支点的情形1:函数w=f(z)=ⁿ√P(z)的支点,其中P(z)是任意的N次多项式

本文探讨了具有多个有限支点的多值函数,特别是函数w=n√P(z),其中P(z)为N次多项式。通过分析函数的支点和支割线,确定了在适当区域内的单值解析分支。以函数z(1-z)为例,解释了如何判断支点并连接支点形成割线,确保函数在选定区域内保持单值解析。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

前面我们讨论了 根式函数 w = z n w=\sqrt[n]{z} w=nz 对数函数 w = L n z w=\mathrm{Ln} z w=Lnz

  • 它们的支点都是二个有限支点 z = 0 z=0 z=0 和无穷远点 z = ∞ z=\infty z=.
  • 其支割线可以是从0 到 ∞ \infty 的一条射线 (如包含原点的负实轴), 这与限制变点 z z z的辐角范围 (如 − π < arg ⁡ z < π -\pi<\arg z<\pi π<argz<π ) 是一致的. 从而, 在 z z z平面上以此割线为边界的区域 G G G 内, 它们都能分出单值解析分支.

但对具有多个有限支点的多值函数, 我们就不便采取限制辐角范围的办法,而是首先求出该函数的一切支点, 然后适当连接支点以割破 z z z 平面. 于是, 在 z z z 平面上以此割线为边界的区域 G G G 内就能分出该函数的单值解析分支. 因为,在 G G G 内变点 z z z 不能穿过支割线, 也就不能单独绕任一个支点转一整周,函数就不可能在 G G G 内同一点取不同的值了.

讨论函数
w = f ( z ) = P ( z ) n w=f(z)=\sqrt[n]{P(z)} w=f(z)=nP(z)

的支点,其中 P ( z ) P(z) P(z) 是任意的 N N N 次多项式,

P ( z ) = A ( z − a 1 ) a 1 ⋯ ( z − a m ) a m , ( 2.27 ) P(z)=A\left(z-a_{1}\right)^{a_{1}} \cdots\left(z-a_{m}\right)^{a_{m}}, \quad\quad(2.27) P(z)=A(za1)a1(zam)am,(2.27)

a 1 , a 2 , ⋯   , a m a_{1}, a_{2}, \cdots, a_{m} a1,a2,,am P ( z ) P(z) P(z) 的一切相异零点. α 1 , α 2 , ⋯   , α m \alpha_{1}, \alpha_{2}, \cdots, \alpha_{m} α1,α2,,αm 分别是它们的重数, 满足

α 1 + α 2 + ⋯ + α m = N . \alpha_{1}+\alpha_{2}+\cdots+\alpha_{m}=N . α1+α2++αm=N.

例 2.24
考察下列函数有哪些支点:
(1) f ( z ) = z ( 1 − z ) f(z)=\sqrt{z(1-z)} f(z)=

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值