复变函数论2-解析函数3-初等多值函数4-1:一般幂函数【w=zᵃ=eᵃᴸⁿᶻ,其中:z≠0,∞且α为复常数】【由于Lnz的多值性,zᵃ一般也是多值的(仅当α为整数时例外)】

本文介绍了复变函数论中的一般幂函数概念,即w=za=eaLnz,讨论了当α为整数、有理数和无理数或虚数时,函数的多值性和单值性。特别是,当α为整数时,函数变为单值;而当α为有理数或无理数时,函数呈现出不同程度的多值性。通过分支切割可以将多值函数转化为单值解析函数。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

d d z z n = 1 n ⋅ z n z = 1 n z 1 n − 1 , ( 2.17 ) ′ \frac{\mathrm{d}}{\mathrm{d} z} \sqrt[n]{z}=\frac{1}{n} \cdot \frac{\sqrt[n]{z}}{z}=\frac{1}{n} z^{\frac{1}{n}-1}, \quad\quad(2.17)' dzdnz =n1znz =n1zn11,(2.17)


定义 2.11

w = z a = e a L n z ( z ≠ 0 , ∞ ; α 为复常数 ) \color{red}{w=z^{a}=\mathrm{e}^{a\mathrm{Ln} z}(z \neq 0, \infty ; \alpha}为复常数) w=za=eaLnz(z=0,;α为复常数) 称为 z z z一般幂函数.

此定义是实数域中等式

x α

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值