复变函数论5-解析函数的洛朗展式与孤立奇点5-解析函数的应用:平面向量场【奇点的流体力学意义、在电场中的应用举例】

本文介绍了解析函数在流体力学和电场中的应用,通过奇点的流体力学意义解释了原点和无穷大作为源或漏的性质,并通过具体例子展示了复势如何描述无旋流动。同时,文章阐述了在电场中,电通和电位作为解析函数的实部和虚部,如何简化平面电场的研究,并给出了求解电场分布的解析函数示例。
摘要由CSDN通过智能技术生成

一、奇点的流体力学意义

在第三章 § 5 § 5 §5 中已经知道, 流体在区域 D D D 内作无源、漏的无旋流动时,对应复势 f ( z ) f(z) f(z) D D D 内的解析函数 (可能是多值的).现在我们举两个例子来说明某些奇点具有的流体力学意义.

例 5.22
考察复势为 f ( z ) = N 2 π ln ⁡ z f(z)=\frac{N}{2 \pi} \ln z f(z)=2πNlnz 的流动 ( N N N为非零实数).

解 我们知道 f ( z ) = N 2 π ln ⁡ z f(z)=\frac{N}{2 \pi} \ln z f(z)=2πNlnz 对应的流动在 0 < ∣ z ∣ < + ∞ 0<|z|<+\infty 0<z<+内是无源、漏的并且是无旋的. 现在我们来看盾原点及 ∞ \infty (作为 ln ⁡ z \ln z lnz的支点) 有什么性质.

z = r e i 0 z=r \mathrm{e}^{i 0} z=rei0, 易知其势函数及流函数分别为

φ ( r , θ ) = N 2 π ln ⁡ r , ψ ( r , θ ) = N 2 π θ . \varphi(r, \theta)=\frac{N}{2 \pi} \ln r, \quad \psi(r, \theta)=\frac{N}{2 \pi} \theta . φ(r,θ)=2πNlnr,ψ(r,θ)=2πNθ.

为了确定原点、 ∞ \infty N N N 的物理意义,考察沿圆周 C : r = C: r= C:r=常数的环量及流量.

Γ C + i N C = ∫ C f ′ ( z ) d z = N 2 π ∫ C d z z = i N . \Gamma_{C}+\mathrm{i} N_{C}=\int_{C} f^{\prime}(z) \mathrm{d} z=\frac{N}{2 \pi} \int_{C} \frac{\mathrm{d} z}{z}=\mathrm{i} N . ΓC+iNC=Cf(z)dz=2πNCzdz=iN.

Γ c = 0 , N c = N \Gamma_{c}=0, N_{c}=N Γc=0,Nc=N. 即对于任意的同心圆周 r = r= r= 常数,均有相同的流量流过. 这恰好说明, 每单位时间内有 ∣ N ∣ |N| N这样多的流量自原点涌出 ( N > 0 ) (N>0) (N>0) 到点 ∞ \infty 漏掉或自点 ∞ \infty 涌出 ( N < 0 ) (N<0) (N<0) 到原点漏掉. 即原点就是一个源 ( N > 0 ) (N>0) (N>0) 或漏 ( N < 0 ) (N<0) (N<0). 对应的, ∞ \infty 就算作一个漏 ( N > 0 ) (N>0) (N>0) 或源 ( N < 0 ) (N<0) (N<0).而称 ∣ N ∣ |N| N 为源 (漏)强 (图5.3).

在这里插入图片描述

故势线是同心圆周 r = r= r= 常数, 流线是过原点的射线 θ = \theta= θ= 常数,且此流动的复速度 v ( z ) ‾ = f ′ ( z ) = N 2 π z \overline{v(z)}=f^{\prime}(z)=\frac{N}{2 \pi z} v(z)=f(z)=2πz

  • 22
    点赞
  • 20
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值