复变函数论6-留数理论及其应用2-1-用留数定理计算实积分1:∫R(cosθ,sinθ)dθ型积分【对原函数不易直接求得的定积分和反常积分可应用留数定理进行计算,要点是将它化归为复变函数的周线积分】

某些实的定积分可应用留数定理进行计算, 尤其是对原函数不易直接求得的定积分和反常积分, 这常是一个有效的方法, 其要点是将它化归为复变函数的周线积分.

一、计算 ∫ 0 2 π R ( cos ⁡ θ , sin ⁡ θ ) d θ \int_{0}^{2 \pi} R(\cos \theta, \sin \theta) \mathrm{d} \theta 02πR(cosθ,sinθ)dθ 型积分

这里 R ( cos ⁡ θ , sin ⁡ θ ) R(\cos \theta, \sin \theta) R(cosθ,sinθ) 表示 cos ⁡ θ , sin ⁡ θ \cos \theta, \sin \theta cosθ,sinθ的有理函数, 并且在 [ 0 , 2 π ] [0,2 \pi] [0,2π] 上连续. 若令 z = e i θ z=\mathrm{e}^{\mathrm{i} \theta} z=eiθ, 则

cos ⁡ θ = z + z − 1 2 , sin ⁡ θ = z − z − 1 2 i , d θ = d z i z , \cos \theta=\frac{z+z^{-1}}{2}, \quad \sin \theta=\frac{z-z^{-1}}{2 \mathrm{i}}, \quad \mathrm{d} \theta=\frac{\mathrm{d} z}{\mathrm{i} z}, cosθ=2z+z1,sinθ=2izz1,dθ=izdz,

θ \theta θ 经历变程 [ 0 , 2 π ] [0,2 \pi] [0,2π] 时, z z z 沿圆周 ∣ z ∣ = 1 |z|=1 z=1的正方向绕行一周.因此有

∫ 0 2 π R ( cos ⁡ θ , sin ⁡ θ ) d θ = ∫ ∣ z = 1 R ( z + z − 1 2 , z − z − 1 2 i ) d z i z , \int_{0}^{2 \pi} R(\cos \theta, \sin \theta) \mathrm{d} \theta=\int_{\left.\right|_{z=1}} R\left(\frac{z+z^{-1}}{2}, \frac{z-z^{-1}}{2 \mathrm{i}}\right) \frac{\mathrm{d} z}{\mathrm{i} z}, 02πR(cosθ,sinθ)dθ=z=1R(2z+z1,2izz1)izdz,

右端是 z z z 的有理函数的周线积分, 并且积分路径上无奇点,应用留数定理就可求得其值.

这里关键一步是引进变量代换 z = e θ z=\mathrm{e}^{\theta} z=eθ, 至于被积函数 R ( cos ⁡ θ , sin ⁡ θ ) R(\cos \theta, \sin \theta) R(cosθ,sinθ) [ 0 [0 [0, 2 π ] 2 \pi] 2π] 上的连续性可不必先检验,只要看变换后的被积函数在 ∣ z ∣ = 1 |z|=1 z=1 上是否有奇点.

例 6.7
计算积分

I = ∫ 0 2 π d θ 1 − 2 p cos ⁡ θ + p 2 ( 0 ⩽ ∣ p ∣ < 1 ) . I=\int_{0}^{2 \pi} \frac{\mathrm{d} \theta}{1-2 p \cos \theta+p^{2}} \quad(0 \leqslant|p|<1) . I=02π12pcosθ+p2dθ(0p<1).


z = e i θ z=\mathrm{e}^{\mathrm{i} \theta} z=eiθ, 则 d θ = d z i z \mathrm{d} \theta=\frac{\mathrm{d} z}{\mathrm{i} z} dθ=izdz. 当 p ≠ 0 p \neq 0 p=0 时,

1 − 2 p cos ⁡ θ + p 2 = 1 − p ( z + z − 1 ) + p 2 = ( z − p ) ( 1 − p z ) z , 1-2 p \cos \theta+p^{2}=1-p\left(z+z^{-1}\right)+p^{2}=\frac{(z-p)(1-p z)}{z}, 12pcosθ+p2=1p(z+z1)+p2=z(zp)(1pz),

这样就有

I = 1 i ∫ ∣ z ∣ − 1 d z ( z − p ) ( 1 − p z ) , I=\frac{1}{\mathrm{i}} \int_{|z|-1} \frac{\mathrm{d} z}{(z-p)(1-p z)}, I=i1z1(zp)(1pz)dz,

且在圆 ∣ z ∣ < 1 |z|<1 z<1 内,

f ( z ) = 1 ( z − p ) ( 1 − p z ) f(z)=\frac{1}{(z-p)(1-p z)} f(z)=(zp)(1pz)1

只以 z = p z=p z=p 为一阶极点, 在 ∣ z ∣ = 1 |z|=1 z=1 上无奇点,依公式 (6.4),

Res ⁡ z = p f ( z ) = 1 1 − p z ∣ z = p = 1 1 − p 2 ( 0 < ∣ p ∣ < 1 ) . \operatorname{Res}_{z=p} f(z)=\left.\frac{1}{1-p z}\right|_{z=p}=\frac{1}{1-p^{2}} \quad(0<|p|<1) . Resz=pf(z)=1pz1 z=p=1p21(0<p<1).

所以, 由留数定理得 I = 1 i ⋅ 2 π i ⋅ 1 1 − p 2 = 2 π 1 − p 2 ( 0 ⩽ ∣ p ∣ < 1 ) I=\frac{1}{\mathrm{i}} \cdot 2 \pi \mathrm{i} \cdot \frac{1}{1-p^{2}}=\frac{2 \pi}{1-p^{2}}(0 \leqslant|p|<1) I=i1

  • 21
    点赞
  • 21
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值