概率论与数理统计教程(八)-方差分析与回归分析04:一元线性回归02

本文详细介绍了在概率论与数理统计中,一元线性回归方程的显著性检验方法,包括F检验、t检验和相关系数检验。通过这些检验可以判断回归方程是否具有意义,即β1是否为零。文中以具体的例子展示了如何进行检验,并解释了检验结果的含义。
摘要由CSDN通过智能技术生成

8.4.4 回归方程的显著性检验
从回归系数的 LSE 可以看出, 对任意给出的 n n n 对数据
( x i , y i ) \left(x_{i}, y_{i}\right) (xi,yi), 都可以求出
β ^ 0 , β ^ 1 \hat{\beta}_{0}, \hat{\beta}_{1} β^0,β^1,

从而可写出回归方程 y ^ = β ^ 0 + β ^ 1 x \hat{y}=\hat{\beta}_{0}+\hat{\beta}_{1} x y^=β^0+β^1x,
但是这样给出的回归方程不一定有意义.
在使用回归方程以前, 首先应对回归方程是否有意义进行判断.
什么叫回归方程有意义呢? 我们知道, 建立回归方程的目的是寻找 y y y 的均值随
x x x 变化的规律, 即找出回归方程 E ( y ) = β 0 + β 1 x E(y)=\beta_{0}+\beta_{1} x E(y)=β0+β1x. 如果
β 1 = 0 \beta_{1}=0 β1=0, 那么不管 x x x 如何变化, E ( y ) E(y) E(y) 不随 x x x
的变化作线性变化,那么这时求得的一元线性回归方程就没有意义,
或称回归方程不显著.如果 β 1 ≠ \beta_{1} \neq β1= 0 ,那么当 x x x 变化时, E ( y ) E(y) E(y)
x x x
的变化作线性变化,那么这时求得的回归方程就有意义,或称回归方程是显著的.
综上,对回归方程是否有意义作判断就是要对如下的检验问题作出判断:
H 0 : β 1 = 0  vs  H 1 : β 1 ≠ 0 , H_{0}: \beta_{1}=0 \quad \text { vs } \quad H_{1}: \beta_{1} \neq 0, H0:β1=0 vs H1:β1=0,
拒绝 H 0 H_{0} H0 表示回归方程是显著的.
在一元线性回归中有三种等价的检验方法, 使用中只要任选其中之一即可.
下面分别加以介绍.
- F F F 检验
采用方差分析的思想,我们从数据出发研究各 y 1 y_{1} y1 不同的原因.
首先引人记号并称 y ^ i = β ^ 0 + β ^ 1 x i \hat{y}_{i}=\hat{\beta}_{0}+\hat{\beta}_{1} x_{i} y^i=β^0+β^1xi
x i x_{i} xi 处的回归值, 又称 y i − y ^ i y_{i}-\hat{y}_{i} yiy^i x i x_{i} xi 处的残差.
数据总的波动用总偏差平方和
S T = ∑ ( y i − y ˉ ) 2 = l y S_{T}=\sum\left(y_{i}-\bar{y}\right)^{2}=l_{y} ST=(yiyˉ)2=ly
表示. 引起各 y i y_{i} yi 不同的原因主要有两类因素: 其一是 H 0 H_{0} H0 可能不真,
β 1 ≠ 0 \beta_{1} \neq 0 β1=0, 从而 E ( y ) = β 0 + β 1 x E(y)=\beta_{0}+\beta_{1} x E(y)=β0+β1x x x x
的变化而变化, 即在每一个 x x x 的观测值处的回归值不同, 其波动用回归平方和
S R = ∑ ( y ^ i − y ˉ ) 2 S_{R}=\sum\left(\hat{y}_{i}-\bar{y}\right)^{2} SR=(y^iyˉ)2
表示; 其二是其他一切因素,包括随机误差、 x x x E ( y ) E(y) E(y) 的非线性影响等,
这样在得到回归值以后, y y y 的观测值与回归值之间还有差距, 这可用残差平方和
S e = ∑ ( y i − y ^ i ) 2 S_{e}=\sum\left(y_{i}-\hat{y}_{i}\right)^{2} Se=(yiy^i)2
表示.
为对上述诸平方和实施方差分析, 下面我们要证明重要的平方和分解式,
为此首先注意到 β ^ 0 , β ^ 1 \hat{\beta}_{0}, \hat{\beta}_{1} β^0,β^1 满足正规方程组
(8.4.7), 因此有
∑ ( y i − β ^ 0 − β ^ 1 x i ) = 0 ⇒ ∑ ( y i − y ^ i ) = 0 , ∑ ( y i − β ^ 0 − β ^ 1 x i ) x i = 0 ⇒ ∑ ( y i − y ^ i ) x i = 0. \begin{array}{c} \sum\left(y_{i}-\hat{\beta}_{0}-\hat{\beta}_{1} x_{i}\right)=0 \Rightarrow \sum\left(y_{i}-\hat{y}_{i}\right)=0, \\ \sum\left(y_{i}-\hat{\beta}_{0}-\hat{\beta}_{1} x_{i}\right) x_{i}=0 \Rightarrow \sum\left(y_{i}-\hat{y}_{i}\right) x_{i}=0 . \end{array} (yiβ^0β^1xi)=0(yiy^i)=0,(yiβ^0β^1xi)xi=0(yiy^i)xi=0.

利用
y ^ i = β ^ 0 + β ^ 1 x i = y ˉ + β ^ 1 ( x i − x ˉ ) \hat{y}_{i}=\hat{\beta}_{0}+\hat{\beta}_{1} x_{i}=\bar{y}+\hat{\beta}_{1}\left(x_{i}-\bar{x}\right) y^i=β^0+β^1xi=yˉ+β^1(xixˉ),
可得
∑ ( y i − y ^ i ) ( y ^ i − y ˉ ) = ∑ ( y i − y ^ i ) [ β ^ 1 ( x i − x ˉ ) ] = β ^ 1 [ ∑ ( y i − y ^ i ) x i − ∑ ( y i − y ^ i ) x ˉ ] = 0 , \sum\left(y_{i}-\hat{y}_{i}\right)\left(\hat{y}_{i}-\bar{y}\right)=\sum\left(y_{i}-\hat{y}_{i}\right)\left[\hat{\beta}_{1}\left(x_{i}-\bar{x}\right)\right]=\hat{\beta}_{1}\left[\sum\left(y_{i}-\hat{y}_{i}\right) x_{i}-\sum\left(y_{i}-\hat{y}_{i}\right) \bar{x}\right]=0, (yiy^i)(y^iyˉ)=(yiy^i)[β^1(xixˉ)]=β^1[(yiy^i)xi(yiy^i)xˉ]=0,
从而
S T = ∑ ( y i − y ˉ ) 2 = ∑ ( y i − y ^ i + y ^ i − y ˉ ) 2 = ∑ ( y i − y ^ i ) 2 + ∑ ( y ^ i − y ˉ ) 2 , S_{T}=\sum\left(y_{i}-\bar{y}\right)^{2}=\sum\left(y_{i}-\hat{y}_{i}+\hat{y}_{i}-\bar{y}\right)^{2}=\sum\left(y_{i}-\hat{y}_{i}\right)^{2}+\sum\left(\hat{y}_{i}-\bar{y}\right)^{2}, ST=(yiyˉ)2=(yiy^i+y^iyˉ)2=(yiy^i)2+(y^iyˉ)2,

S T = S R + S e , S_{T}=S_{R}+S_{e}, ST=SR+Se,
上式就是一元线性回归场合下的平方和分解式.
关于 S R S_{R} SR S S S, 所含有的成分可由如下定理说明.
定理 8.4.2 设 y i = β 0 + β 1 x i + ε i y_{i}=\beta_{0}+\beta_{1} x_{i}+\varepsilon_{i} yi=β0+β1xi+εi, 其中
ε 1 , ε 2 , ⋯   , ε n \varepsilon_{1}, \varepsilon_{2}, \cdots, \varepsilon_{n} ε1,ε2,,εn 相互独立, 且
E ( ε i ) = 0 , Var ⁡ ( ε i ) = σ 2 , i = 1 , 2 , ⋯   , n , E\left(\varepsilon_{i}\right)=0, \quad \operatorname{Var}\left(\varepsilon_{i}\right)=\sigma^{2}, \quad i=1,2, \cdots, n, E(εi)=0,Var(εi)=σ2,i=1,2,,n,
沿用上面的记号,有
E ( S R ) = σ 2 + β 1 2 l x x , E ( S e ) = ( n − 2 ) σ 2 , \begin{array}{l} E\left(S_{R}\right)=\sigma^{2}+\beta_{1}^{2} l_{x x}, \\ E\left(S_{e}\right)=(n-2) \sigma^{2}, \end{array} E(SR)=σ2+β12

  • 24
    点赞
  • 18
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值