复变函数论(八)-解析延拓3-完全解析函数及黎曼面的概念2:单值性定理

本文介绍了复变函数论中的单值性定理,通过完全解析函数的概念和黎曼面,阐述了在单连通区域内的解析函数是单值的。同时,讨论了多值解析函数的支点和单值解析分支,并举例说明了如何判断函数的单值性和奇点类型。
摘要由CSDN通过智能技术生成

f ( z ) f(z) f(z) 是区域 D D D 内的完全解析函数, a , b a, b a,b D D D 内任意两点, γ 1 \gamma_{1} γ1 γ 2 \gamma_{2} γ2 是连接 a , b a, b a,b的两条曲线. f ( z ) f(z) f(z)的一个解析函数元素从点 a a a 出发, 沿 γ 1 \gamma_{1} γ1 γ 2 \gamma_{2} γ2两条路线进行解析延拓, 如到达点 b b b 的函数值不同, 也就是说,如果解析延拓取不同的路线得到不同的解析函数元素, 则函数 f ( z ) f(z) f(z)就是多值的. 我们先看:

例 8.10
设有区域
D 1 : ∣ z − 1 ∣ < R , D 2 : ∣ z − ω ∣ < R , D 3 : ∣ z − ω 2 ∣ < R . \begin{array}{l} D_{1}:|z-1|<R, \\ D_{2}:|z-\omega|<R, \\ D_{3}:\left|z-\omega^{2}\right|<R . \end{array} D1:z1∣<R,D2:zω<R,D3: zω2 <R.

其中

ω = e 2 s i n 3 , \omega=\mathrm{e}^{\frac{2 \mathrm{sin}}{3}}, ω=e32sin,

3 2 < R < 1. \frac{\sqrt{3}}{2}<R<1 . 23 <R<1.

若将解析函数元素 { D 1 , z } \left\{D_{1}, \sqrt{z}\right\} { D1,z } 进行解析延拓 ( z \sqrt{z} z 已取定一支). 从 D 1 D_{1} D1 D 2 D_{2} D2, 从 D 2 D_{2} D2 D 3 D_{3} D3,再从 D 3 D_{3} D3 D 1 D_{1} D1, 结果所得解析函数元素为 { D 1 , − z } \left\{D_{1},-\sqrt{z}\right\} { D1,z } (图8.11).

在这里插入图片描述
这可以用本章 §1 第 2 段幕级数延拓的"圆链法"来实现,圆链的各圆圆心可选在一条闭曲线上, 这条闭曲线从 D 1 D_{1} D1

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值