设 f ( z ) f(z) f(z) 是区域 D D D 内的完全解析函数, a , b a, b a,b 是 D D D 内任意两点, γ 1 \gamma_{1} γ1 和 γ 2 \gamma_{2} γ2 是连接 a , b a, b a,b的两条曲线. f ( z ) f(z) f(z)的一个解析函数元素从点 a a a 出发, 沿 γ 1 \gamma_{1} γ1 和 γ 2 \gamma_{2} γ2两条路线进行解析延拓, 如到达点 b b b 的函数值不同, 也就是说,如果解析延拓取不同的路线得到不同的解析函数元素, 则函数 f ( z ) f(z) f(z)就是多值的. 我们先看:
例 8.10
设有区域
D 1 : ∣ z − 1 ∣ < R , D 2 : ∣ z − ω ∣ < R , D 3 : ∣ z − ω 2 ∣ < R . \begin{array}{l} D_{1}:|z-1|<R, \\ D_{2}:|z-\omega|<R, \\ D_{3}:\left|z-\omega^{2}\right|<R . \end{array} D1:∣z−1∣<R,D2:∣z−ω∣<R,D3:
z−ω2
<R.
其中
ω = e 2 s i n 3 , \omega=\mathrm{e}^{\frac{2 \mathrm{sin}}{3}}, ω=e32sin,
且
3 2 < R < 1. \frac{\sqrt{3}}{2}<R<1 . 23<R<1.
若将解析函数元素 { D 1 , z } \left\{D_{1}, \sqrt{z}\right\} { D1,z} 进行解析延拓 ( z \sqrt{z} z 已取定一支). 从 D 1 D_{1} D1 到 D 2 D_{2} D2, 从 D 2 D_{2} D2 到 D 3 D_{3} D3,再从 D 3 D_{3} D3 到 D 1 D_{1} D1, 结果所得解析函数元素为 { D 1 , − z } \left\{D_{1},-\sqrt{z}\right\} { D1,−z} (图8.11).
这可以用本章 §1 第 2 段幕级数延拓的"圆链法"来实现,圆链的各圆圆心可选在一条闭曲线上, 这条闭曲线从 D 1 D_{1} D1