证明 lim x → ∞ ( 1 + 1 x ) x = e \lim \limits_{x \rightarrow \infty}\left(1+\frac{1}{x}\right)^{x}=\mathrm{e} x→∞lim(1+x1)x=e
证
所求证的极限等价于同时成立以下两个极限:
lim x → + ∞ ( 1 + 1 x ) x = e , lim x → − ∞ ( 1 + 1 x ) x = e . \begin{array}{l} \lim \limits_{x \rightarrow+\infty}\left(1+\frac{1}{x}\right)^{x}=e, \\ \lim \limits_{x \rightarrow-\infty}\left(1+\frac{1}{x}\right)^{x}=e . \end{array} x→+∞lim(1+x1)x=e,x→−∞lim(1+x1)x=e.
先利用数列极限
lim n → ∞ ( 1 + 1 n ) n = e \lim \limits_{n \rightarrow \infty}\left(1+\frac{1}{n}\right)^{n}=e n→∞lim(1+n1)n=e
证明 (2) 式成立.
因为
lim n → ∞ ( 1 + 1 n + 1 ) n = lim n → ∞ ( 1 + 1 n ) n + 1 = e \lim \limits_{n \rightarrow \infty}\left(1+\frac{1}{n+1}\right)^{n}=\lim \limits_{n \rightarrow \infty}\left(1+\frac{1}{n}\right)^{n+1}=e n→∞lim(1+n+11)n=n→∞lim(1+n1)n+1=e,
所以对任意正数 ε \varepsilon ε, 存在正整数 N N N, 当 n ⩾ N n \geqslant N n⩾N时, 有
e − ε < ( 1 + 1 n + 1 ) n < ( 1 + 1 n ) n + 1 < e + ε . \mathrm{e}-\varepsilon<\left(1+\frac{1}{n+1}\right)^{n}<\left(1+\frac{1}{n}\right)^{n+1}<\mathrm{e}+\varepsilon . e−ε<(1+n+11)n<(1+n1)n+1<e+ε.
取 X = N X=N X=N, 当 x > X x>X x>