数学分析(八)-不定积分3-3:某些无理根式的不定积分

§ 3 有理函数和可化为有理函数的不定积分
至此我们已经学得了一些最基本的积分方法. 在此基础上,
本节将讨论某些特殊类型的不定积分, 这些不定积分无论怎样复杂,
原则上都可按一定的步骤把它求出来.
一、有理函数的不定积分
有理函数是指由两个多项式函数的商所表示的函数,其一般形式为
R ( x ) = P ( x ) Q ( x ) = α 0 x n + α 1 x n − 1 + ⋯ + α n β 0 x m + β 1 x m − 1 + ⋯ + β m , R(x)=\frac{P(x)}{Q(x)}=\frac{\alpha_{0} x^{n}+\alpha_{1} x^{n-1}+\cdots+\alpha_{n}}{\beta_{0} x^{m}+\beta_{1} x^{m-1}+\cdots+\beta_{m}}, R(x)=Q(x)P(x)=β0xm+β1xm1++βmα0xn+α1xn1++αn,
其中 n , m n, m n,m 为非负整数, α 0 , α 1 , ⋯   , α n \alpha_{0}, \alpha_{1}, \cdots, \alpha_{n} α0,α1,,αn
β 0 , β 1 , ⋯   , β m \beta_{0}, \beta_{1}, \cdots, \beta_{m} β0,β1,,βm 都是常数, 且
α 0 ≠ 0 , β 0 ≠ 0 \alpha_{0} \neq 0, \beta_{0} \neq 0 α0=0,β0=0. 若 m > m> m> n n n, 则称它为真分式; 若
m ⩽ n m \leqslant n mn, 则称它为假分式. 由多项式的除法可知,
假分式总能化为一个多项式与一个真分式之和.
由于多项式的不定积分是容易求得的, 因此只需研究真分式的不定积分, 故设 (1)
为一有理真分式.
根据代数知识, 如果多项式 Q 1 ( x ) Q_{1}(x) Q1(x) Q 2 ( x ) Q_{2}(x) Q2(x) 是互素的, 即
( Q 1 ( x ) , Q 2 ( x ) ) = 1 \left(Q_{1}(x), Q_{2}(x)\right)=1 (Q1(x),Q2(x))=1, 则存在多项式 P 1 ( x ) P_{1}(x) P1(x)
P 2 ( x ) P_{2}(x) P2(x), 使得 P 1 ( x ) Q 1 ( x ) + P 2 ( x ) Q 2 ( x ) = 1 P_{1}(x) Q_{1}(x)+P_{2}(x) Q_{2}(x)=1 P1(x)Q1(x)+P2(x)Q2(x)=1. 于是
1 Q 1 ( x ) Q 2 ( x ) = P 1 ( x ) Q 1 ( x ) + P 2 ( x ) Q 2 ( x ) Q 1 ( x ) Q 2 ( x ) = P 1 ( x ) Q 2 ( x ) + P 2 ( x ) Q 1 ( x ) \frac{1}{Q_{1}(x) Q_{2}(x)}=\frac{P_{1}(x) Q_{1}(x)+P_{2}(x) Q_{2}(x)}{Q_{1}(x) Q_{2}(x)}=\frac{P_{1}(x)}{Q_{2}(x)}+\frac{P_{2}(x)}{Q_{1}(x)} Q1(x)Q2(x)1=Q1(x)Q2(x)P1(x)Q1(x)+P2(x)Q2(x)=Q2(x)P1(x)+Q1(x)P2(x)
因此,有理真分式必定可以表示成若干个部分分式之和 (称为部分分式分解).
因而问题归结为求那些部分分式的不定积分. 为此,
先把怎样分解部分分式的步骤简述如下 (可与后面的例 1 对照着做):
第一步 对分母 Q ( x ) Q(x) Q(x) 在实系数内作标准分解:
Q ( x ) = ( x − a 1 ) λ 1 ⋯ ( x − a 1 ) λ 3 ( x 2 + p 1 x + q 1 ) μ 1 ⋯ ( x 2 + p t x + q t ) μ 2 . Q(x)=\left(x-a_{1}\right)^{\lambda_{1}} \cdots\left(x-a_{1}\right)^{\lambda_{3}}\left(x^{2}+p_{1} x+q_{1}\right)^{\mu_{1}} \cdots\left(x^{2}+p_{t} x+q_{t}\right)^{\mu_{2}} . Q(x)=(xa1)λ1(xa1)λ3(x2+p1x+q1)μ1(x2+ptx+qt)μ2.
其中
β 0 = 1 , λ i , μ j ( i = 1 , 2 , ⋯   , s ; j = 1 , 2 , ⋯   , t ) \beta_{0}=1, \lambda_{i}, \mu_{j}(i=1,2, \cdots, s ; j=1,2, \cdots, t) β0=1,λi,μj(i=1,2,,s;j=1,2,,t)
均为自然数, 而且
∑ i = 1 ∞ λ i + 2 ∑ j = 1 t μ j = m ; p j 2 − 4 q j < 0 , j = 1 , 2 , ⋯   , t . \sum_{i=1}^{\infty} \lambda_{i}+2 \sum_{j=1}^{t} \mu_{j}=m ; \quad p_{j}^{2}-4 q_{j}<0, j=1,2, \cdots, t . i=1λi+2j=1tμj=m;pj24qj<0,j=1,2,,t.
第二步 根据分母的各个因式分别写出与之相应的部分分式: 对于每个形如 ( x − (x- (x
a ) k a)^{k} a)k 的因式, 它所对应的部分分式是
A 1 x − a + A 2 ( x − a ) 2 + ⋯ + A k ( x − a ) 2 ; \frac{A_{1}}{x-a}+\frac{A_{2}}{(x-a)^{2}}+\cdots+\frac{A_{k}}{(x-a)^{2}} ; xaA1+(xa)2A2++(xa)2Ak;
对每个形如 ( x 2 + p x + q ) k \left(x^{2}+p x+q\right)^{k} (x2+px+q)k 的因式, 它所对应的部分分式是
B 1 x + C 1 x 2 + p x + q + B 2 x + C 2 ( x 2 + p x + q ) 2 + ⋯ + B k x + C k ( x 2 + p x + q ) k . \frac{B_{1} x+C_{1}}{x^{2}+p x+q}+\frac{B_{2} x+C_{2}}{\left(x^{2}+p x+q\right)^{2}}+\cdots+\frac{B_{k} x+C_{k}}{\left(x^{2}+p x+q\right)^{k}} . x2+px+qB1x+C1+(x2+px+q)2B2x+C2++(x2+px+q)kBkx+Ck.
把所有部分分式加起来, 使之等于 R ( x ) R(x) R(x). (至此, 部分分式中的常数系数
A i , B i , C i A_{i}, B_{i}, C_{i} Ai,Bi,Ci 尚为待定的.)
第三步 确定待定系数: 一般方法是将所有部分分式通分相加,
所得分式的分母即为原分母 Q ( x ) Q(x) Q(x), 而其分子亦应与原分子 P ( x ) P(x) P(x) 恒等. 于是,
按同幂项系数必定相等,得到一组关于待定系数的线性方程,
这组方程的解就是需要确定的系数.
例 1 对
R ( x ) = 2 x 4 − x 3 + 4 x 2 + 9 x − 10 x 5 + x 4 − 5 x 3 − 2 x 2 + 4 x − 8 R(x)=\frac{2 x^{4}-x^{3}+4 x^{2}+9 x-10}{x^{5}+x^{4}-5 x^{3}-2 x^{2}+4 x-8} R(x)=x5+x45x32x2+4x82x4x3+4x2+9x10
作部分分式分解.
解 按上述步骤依次执行如下:
Q ( x ) = x 5 + x 4 − 5 x 3 − 2 x 2 + 4 x − 8 = ( x − 2 ) ( x + 2 ) 2 ( x 2 − x + 1 ) . \begin{aligned} Q(x) & =x^{5}+x^{4}-5 x^{3}-2 x^{2}+4 x-8 \\ & =(x-2)(x+2)^{2}\left(x^{2}-x+1\right) . \end{aligned} Q(x)=x5+x45x32x2+4x8=(x2)(x+2)2(x2x+1).
部分分式分解的待定形式为
R ( x ) = A 0 x − 2 + A 1 x + 2 + A 2 ( x + 2 ) 2 + B x + C x 2 − x + 1 . R(x)=\frac{A_{0}}{x-2}+\frac{A_{1}}{x+2}+\frac{A_{2}}{(x+2)^{2}}+\frac{B x+C}{x^{2}-x+1} . R(x)=x2A0+x+2A1+(x+2)2A2+x2x+1Bx+C.
Q ( x ) Q(x) Q(x) 乘上式两边,得一恒等式
2 x 4 − x 3 + 4 x 2 + 9 x − 10 = A 0 ( x + 2 ) 2 ( x 2 − x + 1 ) + A 1 ( x − 2 ) ( x + 2 ) ( x 2 − x + 1 ) + A 2 ( x − 2 ) ( x 2 − x + 1 ) + ( B x + C ) ( x − 2 ) ( x + 2 ) 2 . \begin{aligned} 2 x^{4}-x^{3}+4 x^{2}+9 x-10= & A_{0}(x+2)^{2}\left(x^{2}-x+1\right)+ \\ & A_{1}(x-2)(x+2)\left(x^{2}-x+1\right)+A_{2}(x-2)\left(x^{2}-x+1\right)+ \\ & (B x+C)(x-2)(x+2)^{2} . \end{aligned} 2x4x3+4x2+9x10=A0(x+2)2(x2x+1)+A1(x2)(x+2)(x2x+1)+A2(x2)(x2x+1)+(Bx+C)(x2)(x+2)2.
然后使等式两边同幂项系数相等, 得到线性方程组:
{ A 0 + A 1 + B = 2 , ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ x 4  的系数  3 A 0 − A 1 + A 2 + 2 B + C = − 1 , ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ x 3  的系数  A 0 − 3 A 1 − 3 A 2 − 4 B + 2 C = 4 , ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ x 2  的系数  4 A 1 + 3 A 2 − 8 B − 4 C = 9 , ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯  的系数  4 A 0 − 4 A 1 − 2 A 2 − 8 C = − 10 , ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯  常数项  \left\{\begin{array}{l} A_{0}+A_{1}+B=2, \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots x^{4} \text { 的系数 } \\ 3 A_{0}-A_{1}+A_{2}+2 B+C=-1, \cdots \cdots \cdots \cdots \cdots \cdots \cdots x^{3} \text { 的系数 } \\ A_{0}-3 A_{1}-3 A_{2}-4 B+2 C=4, \cdots \cdots \cdots \cdots \cdots \cdots x^{2} \text { 的系数 } \\ 4 A_{1}+3 A_{2}-8 B-4 C=9, \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \text { 的系数 } \\ 4 A_{0}-4 A_{1}-2 A_{2}-8 C=-10, \cdots \cdots \cdots \cdots \cdots \cdots \cdots \text { 常数项 } \end{array}\right. A0+A1+B=2,⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯x4 的系数 3A0A1+A2+2B+C=1,⋯⋯⋯⋯⋯⋯⋯x3 的系数 A03A13A24B+2C=4,⋯⋯⋯⋯⋯⋯x2 的系数 4A1+3A28B4C=9,⋯⋯⋯⋯⋯⋯⋯⋯ 的系数 4A04A12A28C=10,⋯⋯⋯⋯⋯⋯⋯ 常数项 
求出它的解: A 0 = 1 , A 1 = 2 , A 2 = − 1 , B = − 1 , C = 1 A_{0}=1, A_{1}=2, A_{2}=-1, B=-1, C=1 A0=1,A1=2,A2=1,B=1,C=1, 并代人 (3) 式,
这便完成了对 R ( x ) R(x) R(x) 的部分分式分解:
R ( x ) = 1 x − 2 + 2 x + 2 − 1 ( x + 2 ) 2 − x − 1 x 2 − x + 1 . R(x)=\frac{1}{x-2}+\frac{2}{x+2}-\frac{1}{(x+2)^{2}}-\frac{x-1}{x^{2}-x+1} . R(x)=x21+x+22(x+2)21x2x+1x1.
上述待定系数法有时可用较简便的方法去替代. 例如可将 x x x 的某些特定值 (如
Q ( x ) = 0 Q(x)=0 Q(x)=0 的根) 代人 (4) 式, 以便得到一组较简单的方程,
或直接求得某几个待定系数的值. 对于上例, 若分别用 x = 2 x=2 x=2 x = − 2 x=-2 x=2 代人
(4) 式,立即求得
A 0 = 1  和  A 2 = − 1. A_{0}=1 \text { 和 } A_{2}=-1 . A0=1  A2=1.
于是 (4) 式简化成为
x 4 − 3 x 3 + 12 x − 16 = A 1 ( x − 2 ) ( x + 2 ) ( x 2 − x + 1 ) + ( B x + C ) ( x − 2 ) ( x + 2 ) 2 . \begin{aligned} x^{4}-3 x^{3}+12 x-16= & A_{1}(x-2)(x+2)\left(x^{2}-x+1\right)+ \\ & (B x+C)(x-2)(x+2)^{2} . \end{aligned} x43x3+12x16=A1(x2)(x+2)(x2x+1)+(Bx+C)(x2)(x+2)2.
为继续求得 A 1 , B , C A_{1}, B, C A1,B,C, 还可用 x x x 的三个简单值代人上式, 如令
x = 0 , 1 , − 1 x=0,1,-1 x=0,1,1, 相应得到
{ A 1 + 2 C = 4 , A 1 + 3 B + 3 C = 2 , 3 A 1 − B + C = 8 , \left\{\begin{array}{l} A_{1}+2 C=4, \\ A_{1}+3 B+3 C=2, \\ 3 A_{1}-B+C=8, \end{array}\right. A1+2C=4,A1+3B+3C=2,3A1B+C=8,
由此易得 A 1 = 2 , B = − 1 , C = 1 A_{1}=2, B=-1, C=1 A1=2,B=1,C=1. 这就同样确定了所有待定系数.
一旦完成了部分分式分解,最后求各个部分分式的不定积分. 由以上讨论知道,
任何有理真分式的不定积分都将归为求以下两种形式的不定积分:
(I ) ∫ d x ( x − a ) k \int \frac{\mathrm{d} x}{(x-a)^{k}} (xa)kdx;
( II )
∫ L x + M ( x 2 + p x + q ) k   d x ( p 2 − 4 q < 0 ) \int \frac{L x+M}{\left(x^{2}+p x+q\right)^{k}} \mathrm{~d} x\left(p^{2}-4 q<0\right) (x2+px+q)kLx+M dx(p24q<0).
对于 ( I ), 已知
∫ d x ( x − a ) k = { ln ⁡ ∣ x − a ∣ + C , k = 1 , 1 ( 1 − k ) ( x − a ) k − 1 + C , k > 1. \int \frac{\mathrm{d} x}{(x-a)^{k}}=\left\{\begin{array}{cl} \ln |x-a|+C, & k=1, \\ \frac{1}{(1-k)(x-a)^{k-1}}+C, & k>1 . \end{array}\right. (xa)kdx={lnxa+C,(1k)(xa)k11+C,k=1,k>1.
对于 (II), 只要作适当换元 ( \left(\right. (
t = x + p 2 ) \left.t=x+\frac{p}{2}\right) t=x+2p), 便化为
∫ L x + M ( x 2 + p x + q ) k   d x = ∫ L t + N ( t 2 + r 2 ) k   d t \int \frac{L x+M}{\left(x^{2}+p x+q\right)^{k}} \mathrm{~d} x=\int \frac{L t+N}{\left(t^{2}+r^{2}\right)^{k}} \mathrm{~d} t (x2+px+q)kLx+M dx=(t2+r2)kLt+N dt
= L ∫ t ( t 2 + r 2 ) k   d t + N ∫ d t ( t 2 + r 2 ) k , =L \int \frac{t}{\left(t^{2}+r^{2}\right)^{k}} \mathrm{~d} t+N \int \frac{\mathrm{d} t}{\left(t^{2}+r^{2}\right)^{k}}, =L(t2+r2)kt dt+N(t2+r2)kdt,
其中 r 2 = q − p 2 4 , N = M − p 2 L r^{2}=q-\frac{p^{2}}{4}, N=M-\frac{p}{2} L r2=q4p2,N=M2pL.
k = 1 k=1 k=1 时, (5) 式右边两个不定积分分别为
∫ t t 2 + r 2   d t = 1 2 ln ⁡ ( t 2 + r 2 ) + C , ∫ d t t 2 + r 2 = 1 r arctan ⁡ t r + C . \begin{array}{c} \int \frac{t}{t^{2}+r^{2}} \mathrm{~d} t=\frac{1}{2} \ln \left(t^{2}+r^{2}\right)+C, \\ \int \frac{\mathrm{d} t}{t^{2}+r^{2}}=\frac{1}{r} \arctan \frac{t}{r}+C . \end{array} t2+r2t dt=21ln(t2+r2)+C,t2+r2dt=r1arctanrt+C.

k ⩾ 2 k \geqslant 2 k2 时,(5) 式右边第一个不定积分为
∫ t ( t 2 + r 2 ) 4   d t = 1 2 ( 1 − k ) ( t 2 + r 2 ) t − 1 + C . \int \frac{t}{\left(t^{2}+r^{2}\right)^{4}} \mathrm{~d} t=\frac{1}{2(1-k)\left(t^{2}+r^{2}\right)^{t-1}}+C . (t2+r2)4t dt=2(1k)(t2+r2)t11+C.
对于第二个不定积分, 记
I k = ∫ d t ( t 2 + r 2 ) k , I_{k}=\int \frac{\mathrm{d} t}{\left(t^{2}+r^{2}\right)^{k}}, Ik=(t2+r2)kdt,
可用分部积分法导出递推公式如下:
I k = 1 r 2 ∫ ( t 2 + r 2 ) − t 2 ( t 2 + r 2 ) k   d t = 1 r 2 I k − 1 − 1 r 2 ∫ t 2 ( t 2 + r 2 ) k   d t = 1 r 2 I k − 1 + 1 2 r 2 ( k − 1 ) ∫ t   d ( 1 ( t 2 + r 2 ) k − 1 ) = 1 r 2 I k − 1 + 1 2 r 2 ( k − 1 ) [ t ( t 2 + r 2 ) k − 1 − I k − 1 ] . \begin{aligned} I_{k} & =\frac{1}{r^{2}} \int \frac{\left(t^{2}+r^{2}\right)-t^{2}}{\left(t^{2}+r^{2}\right)^{k}} \mathrm{~d} t \\ & =\frac{1}{r^{2}} I_{k-1}-\frac{1}{r^{2}} \int \frac{t^{2}}{\left(t^{2}+r^{2}\right)^{k}} \mathrm{~d} t \\ & =\frac{1}{r^{2}} I_{k-1}+\frac{1}{2 r^{2}(k-1)} \int t \mathrm{~d}\left(\frac{1}{\left(t^{2}+r^{2}\right)^{k-1}}\right) \\ & =\frac{1}{r^{2}} I_{k-1}+\frac{1}{2 r^{2}(k-1)}\left[\frac{t}{\left(t^{2}+r^{2}\right)^{k-1}}-I_{k-1}\right] . \end{aligned} Ik=r21(t2+r2)k(t2+r2)t2 dt=r21Ik1r21(t2+r2)kt2 dt=r21Ik1+2r2(k1)1t d((t2+r2)k11)=r21Ik1+2r2(k1)1[(t2+r2)k1tIk1].
经整理得到
I k = t 2 r 2 ( k − 1 ) ( t 2 + r 2 ) k − 1 + 2 k − 3 2 r 2 ( k − 1 ) I k − 1 . I_{k}=\frac{t}{2 r^{2}(k-1)\left(t^{2}+r^{2}\right)^{k-1}}+\frac{2 k-3}{2 r^{2}(k-1)} I_{k-1} . Ik=2r2(k1)(t2+r2)k1t+2r2(k1)2k3Ik1.
重复使用递推公式 (7), 最终归为计算 I 1 I_{1} I1, 这已由 (6) 式给出.
把所有这些局部结果代回 (5) 式, 并令 t = x + p 2 t=x+\frac{p}{2} t=x+2p,
就完成了对不定积分 (II) 的计算.
例 2 求
∫ x 2 + 1 ( x 2 − 2 x + 2 ) 2   d x \int \frac{x^{2}+1}{\left(x^{2}-2 x+2\right)^{2}} \mathrm{~d} x (x22x+2)2x2+1 dx.
解 在本题中, 由于被积函数的分母只有单一因式, 因此,
部分分式分解能被简化为
x 2 + 1 ( x 2 − 2 x + 2 ) 2 = ( x 2 − 2 x + 2 ) + ( 2 x − 1 ) ( x 2 − 2 x + 2 ) 2 = 1 x 2 − 2 x + 2 + 2 x − 1 ( x 2 − 2 x + 2 ) 2 . \begin{aligned} \frac{x^{2}+1}{\left(x^{2}-2 x+2\right)^{2}} & =\frac{\left(x^{2}-2 x+2\right)+(2 x-1)}{\left(x^{2}-2 x+2\right)^{2}} \\ & =\frac{1}{x^{2}-2 x+2}+\frac{2 x-1}{\left(x^{2}-2 x+2\right)^{2}} . \end{aligned} (x22x+2)2x2+1=(x22x+2)2(x22x+2)+(2x1)=x22x+21+(x22x+2)22x1.
现分别计算部分分式的不定积分如下:
∫ d x x 2 − 2 x + 2 = ∫ d ( x − 1 ) ( x − 1 ) 2 + 1 = arctan ⁡ ( x − 1 ) + C 1 . ∫ 2 x − 1 ( x 2 − 2 x + 2 ) 2   d x = ∫ ( 2 x − 2 ) + 1 ( x 2 − 2 x + 2 ) 2   d x = ∫ d ( x 2 − 2 x + 2 ) ( x 2 − 2 x + 2 ) 2 + ∫ d ( x − 1 ) [ ( x − 1 ) 2 + 1 ] 2 = − 1 x 2 − 2 x + 2 + ∫ d t ( t 2 + 1 ) 2 . \begin{aligned} \int \frac{\mathrm{d} x}{x^{2}-2 x+2}= & \int \frac{\mathrm{d}(x-1)}{(x-1)^{2}+1}=\arctan (x-1)+C_{1} . \\ \int \frac{2 x-1}{\left(x^{2}-2 x+2\right)^{2}} \mathrm{~d} x & =\int \frac{(2 x-2)+1}{\left(x^{2}-2 x+2\right)^{2}} \mathrm{~d} x \\ & =\int \frac{\mathrm{d}\left(x^{2}-2 x+2\right)}{\left(x^{2}-2 x+2\right)^{2}}+\int \frac{\mathrm{d}(x-1)}{\left[(x-1)^{2}+1\right]^{2}} \\ & =\frac{-1}{x^{2}-2 x+2}+\int \frac{\mathrm{d} t}{\left(t^{2}+1\right)^{2}} . \end{aligned} x22x+2dx=(x22x+2)22x1 dx(x1)2+1d(x1)=arctan(x1)+C1.=(x22x+2)2(2x2)+1 dx=(x22x+2)2d(x22x+2)+[(x1)2+1]2d(x1)=x22x+21+(t2+1)2dt.
由递推公式 (7), 求得其中
∫ d t ( t 2 + 1 ) 2 = t 2 ( t 2 + 1 ) + 1 2 ∫ d t t 2 + 1 = x − 1 2 ( x 2 − 2 x + 2 ) + 1 2 arctan ⁡ ( x − 1 ) + C 2 . \begin{aligned} \int \frac{\mathrm{d} t}{\left(t^{2}+1\right)^{2}} & =\frac{t}{2\left(t^{2}+1\right)}+\frac{1}{2} \int \frac{\mathrm{d} t}{t^{2}+1} \\ & =\frac{x-1}{2\left(x^{2}-2 x+2\right)}+\frac{1}{2} \arctan (x-1)+C_{2} . \end{aligned} (t2+1)2dt=2(t2+1)t+21t2+1dt=2(x22x+2)x1+21arctan(x1)+C2.
于是得到
∫ x 2 + 1 ( x 2 − 2 x + 2 ) 2   d x = x − 3 2 ( x 2 − 2 x + 2 ) + 3 2 arctan ⁡ ( x − 1 ) + C . \int \frac{x^{2}+1}{\left(x^{2}-2 x+2\right)^{2}} \mathrm{~d} x=\frac{x-3}{2\left(x^{2}-2 x+2\right)}+\frac{3}{2} \arctan (x-1)+C . (x22x+2)2x2+1 dx=2(x22x+2)x3+23arctan(x1)+C.
下面再介绍几类被积函数能变换为有理函数的不定积分.
二、三角函数有理式的不定积分
u ( x ) , v ( x ) u(x), v(x) u(x),v(x) 及常数经过有限次四则运算所得到的函数称为关于
u ( x ) , v ( x ) u(x), v(x) u(x),v(x) 的有理式,并用 R ( u ( x ) , v ( x ) ) R(u(x), v(x)) R(u(x),v(x)) 表示.
∫ R ( sin ⁡ x , cos ⁡ x ) d x \int R(\sin x, \cos x) \mathrm{d} x R(sinx,cosx)dx
是三角函数有理式的不定积分.一般通过变换 t = tan ⁡ x 2 t=\tan \frac{x}{2} t=tan2x,
可把它化为有理函数的不定积分. 这是因为
sin ⁡ x = 2 sin ⁡ x 2 cos ⁡ x 2 sin ⁡ 2 x 2 + cos ⁡ 2 x 2 = 2 tan ⁡ x 2 1 + tan ⁡ 2 x 2 = 2 t 1 + t 2 , cos ⁡ x = cos ⁡ 2 x 2 − sin ⁡ 2 x 2 sin ⁡ 2 x 2 + cos ⁡ 2 x 2 = 1 − tan ⁡ 2 x 2 1 + tan ⁡ 2 x 2 = 1 − t 2 1 + t 2 ,   d x = 2 1 + t 2   d t , \begin{array}{c} \sin x=\frac{2 \sin \frac{x}{2} \cos \frac{x}{2}}{\sin ^{2} \frac{x}{2}+\cos ^{2} \frac{x}{2}}=\frac{2 \tan \frac{x}{2}}{1+\tan ^{2} \frac{x}{2}}=\frac{2 t}{1+t^{2}}, \\ \cos x=\frac{\cos ^{2} \frac{x}{2}-\sin ^{2} \frac{x}{2}}{\sin ^{2} \frac{x}{2}+\cos ^{2} \frac{x}{2}}=\frac{1-\tan ^{2} \frac{x}{2}}{1+\tan ^{2} \frac{x}{2}}=\frac{1-t^{2}}{1+t^{2}}, \\ \mathrm{~d} x=\frac{2}{1+t^{2}} \mathrm{~d} t, \end{array} sinx=sin22x+cos22x2sin2xcos2x=1+tan22x2tan2x=1+t22t,cosx=sin22x+cos22xcos22xsin22x=1+tan22x1tan22x=1+t21t2, dx=1+t22 dt,

所以
∫ R ( sin ⁡ x , cos ⁡ x ) d x = ∫ R ( 2 t 1 + t 2 , 1 − t 2 1 + t 2 ) 2 1 + t 2   d t \int R(\sin x, \cos x) \mathrm{d} x=\int R\left(\frac{2 t}{1+t^{2}}, \frac{1-t^{2}}{1+t^{2}}\right) \frac{2}{1+t^{2}} \mathrm{~d} t R(sinx,cosx)dx=R(1+t22t,1+t21t2)1+t22 dt.
例 3 求 ∫ 1 + sin ⁡ x sin ⁡ x ( 1 + cos ⁡ x ) d x \int \frac{1+\sin x}{\sin x(1+\cos x)} \mathrm{d} x sinx(1+cosx)1+sinxdx.
解 令 t = tan ⁡ x 2 t=\tan \frac{x}{2} t=tan2x, 将 (8)、(9)、(10) 代人被积表达式,
∫ 1 + sin ⁡ x sin ⁡ x ( 1 + cos ⁡ x ) d x = ∫ 1 + 2 t 1 + t 2 2 t 1 + t 2 ( 1 + 1 − t 2 1 + t 2 ) ⋅ 2 1 + t 2   d t = ∫ 1 2 ( t + 2 + 1 t ) d t = 1 2 ( t 2 2 + 2 t + ln ⁡ ∣ t ∣ ) + C = 1 4 tan ⁡ 2 x 2 + tan ⁡ x 2 + 1 2 ln ⁡ ∣ tan ⁡ x 2 ∣ + C . \begin{aligned} & \int \frac{1+\sin x}{\sin x(1+\cos x)} \mathrm{d} x=\int \frac{1+\frac{2 t}{1+t^{2}}}{\frac{2 t}{1+t^{2}}\left(1+\frac{1-t^{2}}{1+t^{2}}\right)} \cdot \frac{2}{1+t^{2}} \mathrm{~d} t \\ = & \int \frac{1}{2}\left(t+2+\frac{1}{t}\right) \mathrm{d} t=\frac{1}{2}\left(\frac{t^{2}}{2}+2 t+\ln |t|\right)+C \\ = & \frac{1}{4} \tan ^{2} \frac{x}{2}+\tan \frac{x}{2}+\frac{1}{2} \ln \left|\tan \frac{x}{2}\right|+C . \end{aligned} ==sinx(1+cosx)1+sinxdx=1+t22t(1+1+t21t2)1+1+t22t1+t22 dt21(t+2+t1)dt=21(2t2+2t+lnt)+C41tan22x+tan2x+21ln tan2x +C.
注意 上面所用的变换 t = tan ⁡ x 2 t=\tan \frac{x}{2} t=tan2x
对三角函数有理式的不定积分虽然总是有效的,但并不意味着在任何场合都是简便的.
例 4 求
∫ d x a 2 sin ⁡ 2 x + b 2 cos ⁡ 2 x ( a b ≠ 0 ) \int \frac{\mathrm{d} x}{a^{2} \sin ^{2} x+b^{2} \cos ^{2} x}(a b \neq 0) a2sin2x+b2cos2xdx(ab=0).
解 由于
∫ d x a 2 sin ⁡ 2 x + b 2 cos ⁡ 2 x = ∫ sec ⁡ 2 x a 2 tan ⁡ 2 x + b 2   d x = ∫ d ( tan ⁡ x ) a 2 tan ⁡ 2 x + b 2 , \int \frac{\mathrm{d} x}{a^{2} \sin ^{2} x+b^{2} \cos ^{2} x}=\int \frac{\sec ^{2} x}{a^{2} \tan ^{2} x+b^{2}} \mathrm{~d} x=\int \frac{\mathrm{d}(\tan x)}{a^{2} \tan ^{2} x+b^{2}}, a2sin2x+b2cos2xdx=a2tan2x+b2sec2x dx=a2tan2x+b2d(tanx),
故令 t = tan ⁡ x t=\tan x t=tanx, 就有
∫ d x a 2 sin ⁡ 2 x + b 2 cos ⁡ 2 x = ∫ d t a 2 t 2 + b 2 = 1 a ∫ d ( a t ) ( a t ) 2 + b 2 = 1 a b arctan ⁡ a t b + C = 1 a b arctan ⁡ ( a b tan ⁡ x ) + C . \begin{aligned} \int \frac{\mathrm{d} x}{a^{2} \sin ^{2} x+b^{2} \cos ^{2} x} & =\int \frac{\mathrm{d} t}{a^{2} t^{2}+b^{2}}=\frac{1}{a} \int \frac{\mathrm{d}(a t)}{(a t)^{2}+b^{2}} \\ & =\frac{1}{a b} \arctan \frac{a t}{b}+C \\ & =\frac{1}{a b} \arctan \left(\frac{a}{b} \tan x\right)+C . \end{aligned} a2sin2x+b2cos2xdx=a2t2+b2dt=a1(at)2+b2d(at)=ab1arctanbat+C=ab1arctan(batanx)+C.
通常当被积函数是 sin ⁡ 2 x , cos ⁡ 2 x \sin ^{2} x, \cos ^{2} x sin2x,cos2x sin ⁡ x cos ⁡ x \sin x \cos x sinxcosx
的有理式时,采用变换 t = tan ⁡ x t=\tan x t=tanx
往往较为简便.其他特殊情形可因题而异,选择合适的变换.
三、某些无理根式的不定积分
1. ∫ R ( x , a x + b c x + d n ) d x \int R\left(x, \sqrt[n]{\frac{a x+b}{c x+d}}\right) \mathrm{d} x R(x,ncx+dax+b )dx
型不定积分 ( a d − b c ≠ 0 ) (a d-b c \neq 0) (adbc=0). 对此只需令
t = a x + b c x + d n t=\sqrt[n]{\frac{a x+b}{c x+d}} t=ncx+dax+b , 就可化为有理函数的不定积分.
例 5 求 ∫ 1 x x + 2 x − 2   d x \int \frac{1}{x} \sqrt{\frac{x+2}{x-2}} \mathrm{~d} x x1x2x+2  dx.
解 令 t = x + 2 x − 2 t=\sqrt{\frac{x+2}{x-2}} t=x2x+2 , 则有
x = 2 ( t 2 + 1 ) t 2 − 1 ,   d x = − 8 t ( t 2 − 1 ) 2   d t x=\frac{2\left(t^{2}+1\right)}{t^{2}-1}, \mathrm{~d} x=\frac{-8 t}{\left(t^{2}-1\right)^{2}} \mathrm{~d} t x=t212(t2+1), dx=(t21)28t dt,
∫ 1 x x + 2 x − 2   d x = ∫ 4 t 2 ( 1 − t 2 ) ( 1 + t 2 ) d t = ∫ ( 2 1 − t 2 − 2 1 + t 2 ) d t = ln ⁡ ∣ 1 + t 1 − t ∣ − 2 arctan ⁡ t + C \begin{aligned} \int \frac{1}{x} \sqrt{\frac{x+2}{x-2}} \mathrm{~d} x & =\int \frac{4 t^{2}}{\left(1-t^{2}\right)\left(1+t^{2}\right)} \mathrm{d} t \\ & =\int\left(\frac{2}{1-t^{2}}-\frac{2}{1+t^{2}}\right) \mathrm{d} t \\ & =\ln \left|\frac{1+t}{1-t}\right|-2 \arctan t+C \end{aligned} x1x2x+2  dx=(1t2)(1+t2)4t2dt=(1t221+t22)dt=ln 1t1+t 2arctant+C
= ln ⁡ ∣ 1 + ( x + 2 ) / ( x − 2 ) 1 − ( x + 2 ) / ( x − 2 ) ∣ − 2 arctan ⁡ x + 2 x − 2 + C . =\ln \left|\frac{1+\sqrt{(x+2) /(x-2)}}{1-\sqrt{(x+2) /(x-2)}}\right|-2 \arctan \sqrt{\frac{x+2}{x-2}}+C . =ln 1(x+2)/(x2) 1+(x+2)/(x2) 2arctanx2x+2 +C.
例 6 求 ∫ d x ( 1 + x ) 2 + x − x 2 \int \frac{\mathrm{d} x}{(1+x) \sqrt{2+x-x^{2}}} (1+x)2+xx2 dx.
解 由于
1 ( 1 + x ) 2 + x − x 2 = 1 ( 1 + x ) 2 1 + x 2 − x , \frac{1}{(1+x) \sqrt{2+x-x^{2}}}=\frac{1}{(1+x)^{2}} \sqrt{\frac{1+x}{2-x}}, (1+x)2+xx2 1=(1+x)212x1+x ,
故令 t = 1 + x 2 − x t=\sqrt{\frac{1+x}{2-x}} t=2x1+x , 则有
x = 2 t 2 − 1 1 + t 2 ,   d x = 6 t ( 1 + t 2 ) 2   d t x=\frac{2 t^{2}-1}{1+t^{2}}, \mathrm{~d} x=\frac{6 t}{\left(1+t^{2}\right)^{2}} \mathrm{~d} t x=1+t22t21, dx=(1+t2)26t dt,
∫ d x ( 1 + x ) 2 + x − x 2 = ∫ 1 ( 1 + x ) 2 1 + x 2 − x   d x = ∫ ( 1 + t 2 ) 2 9 t 4 ⋅ t ⋅ 6 t ( 1 + t 2 ) 2   d t = ∫ 2 3 t 2   d t = − 2 3 t + C = − 2 3 2 − x 1 + x + C . \begin{aligned} & \int \frac{\mathrm{d} x}{(1+x) \sqrt{2+x-x^{2}}}=\int \frac{1}{(1+x)^{2}} \sqrt{\frac{1+x}{2-x}} \mathrm{~d} x \\ = & \int \frac{\left(1+t^{2}\right)^{2}}{9 t^{4}} \cdot t \cdot \frac{6 t}{\left(1+t^{2}\right)^{2}} \mathrm{~d} t=\int \frac{2}{3 t^{2}} \mathrm{~d} t \\ = & -\frac{2}{3 t}+C=-\frac{2}{3} \sqrt{\frac{2-x}{1+x}}+C . \end{aligned} ==(1+x)2+xx2 dx=(1+x)212x1+x  dx9t4(1+t2)2t(1+t2)26t dt=3t22 dt3t2+C=321+x2x +C.
2. ∫ R ( x , a x 2 + b x + c ) d x \int R\left(x, \sqrt{a x^{2}+b x+c}\right) \mathrm{d} x R(x,ax2+bx+c )dx 型不定积分
( a > 0 \left(a>0\right. (a>0 b 2 − 4 a c ≠ 0 , a < 0 b^{2}-4 a c \neq 0, a<0 b24ac=0,a<0
b 2 − 4 a c > 0 ) \left.b^{2}-4 a c>0\right) b24ac>0).
由于
a x 2 + b x + c = a [ ( x + b 2 a ) 2 + 4 a c − b 2 4 a 2 ] , a x^{2}+b x+c=a\left[\left(x+\frac{b}{2 a}\right)^{2}+\frac{4 a c-b^{2}}{4 a^{2}}\right], ax2+bx+c=a[(x+2ab)2+4a24acb2],
若记
u = x + b 2 a , k 2 = ∣ 4 a c − b 2 4 a 2 ∣ u=x+\frac{b}{2 a}, k^{2}=\left|\frac{4 a c-b^{2}}{4 a^{2}}\right| u=x+2ab,k2= 4a24acb2 ,
则此二次三项式必属于以下三种情形之一:
∣ a ∣ ( u 2 + k 2 ) , ∣ a ∣ ( u 2 − k 2 ) , ∣ a ∣ ( k 2 − u 2 ) . |a|\left(u^{2}+k^{2}\right),|a|\left(u^{2}-k^{2}\right),|a|\left(k^{2}-u^{2}\right) . a(u2+k2),a(u2k2),a(k2u2).
因此上述无理根式的不定积分也就转化为以下三种类型之一:
∫ R ( u , u 2 ± k 2 ) d u , ∫ R ( u , k 2 − u 2 ) d u . \int R\left(u, \sqrt{u^{2} \pm k^{2}}\right) \mathrm{d} u, \quad \int R\left(u, \sqrt{k^{2}-u^{2}}\right) \mathrm{d} u . R(u,u2±k2 )du,R(u,k2u2 )du.
当分别令 u = k tan ⁡ t , u = k sec ⁡ t , u = k sin ⁡ t u=k \tan t, u=k \sec t, u=k \sin t u=ktant,u=ksect,u=ksint 后,
它们都化为三角有理式的不定积分.
例 7 求 I = ∫ d x x x 2 − 2 x − 3 I=\int \frac{\mathrm{d} x}{x \sqrt{x^{2}-2 x-3}} I=xx22x3 dx.
解 解法一 按上述一般步骤, 求得
I = ∫ d x x ( x − 1 ) 2 − 4 = ∫ d u ( u + 1 ) u 2 − 4 ( x = u + 1 ) = ∫ 2 sec ⁡ θ tan ⁡ θ ( 2 sec ⁡ θ + 1 ) ⋅ 2 tan ⁡ θ d θ ( u = 2 sec ⁡ θ ) \begin{array}{rlr} I & =\int \frac{\mathrm{d} x}{x \sqrt{(x-1)^{2}-4}}=\int \frac{\mathrm{d} u}{(u+1) \sqrt{u^{2}-4}} & (x=u+1) \\ & =\int \frac{2 \sec \theta \tan \theta}{(2 \sec \theta+1) \cdot 2 \tan \theta} \mathrm{d} \theta & (u=2 \sec \theta) \end{array} I=x(x1)24 dx=(u+1)u24 du=(2secθ+1)2tanθ2secθtanθdθ(x=u+1)(u=2secθ)

= ∫ d θ 2 + cos ⁡ θ = ∫ 2 1 + t 2 2 + 1 − t 2 1 + t 2   d t = ∫ 2 t 2 + 3   d t = 2 3 arctan ⁡ t 3 + C = 2 3 arctan ⁡ ( 1 3 tan ⁡ θ 2 ) + C . \begin{array}{l} =\int \frac{\mathrm{d} \theta}{2+\cos \theta}=\int \frac{\frac{2}{1+t^{2}}}{2+\frac{1-t^{2}}{1+t^{2}}} \mathrm{~d} t \\ =\int \frac{2}{t^{2}+3} \mathrm{~d} t=\frac{2}{\sqrt{3}} \arctan \frac{t}{\sqrt{3}}+C \\ =\frac{2}{\sqrt{3}} \arctan \left(\frac{1}{\sqrt{3}} \tan \frac{\theta}{2}\right)+C . \end{array} =2+cosθdθ=2+1+t21t21+t22 dt=t2+32 dt=3 2arctan3 t+C=3 2arctan(3 1tan2θ)+C.

由于
tan ⁡ θ 2 = sin ⁡ θ 1 + cos ⁡ θ = tan ⁡ θ sec ⁡ θ + 1 = ( u 2 ) 2 − 1 u 2 + 1 = x 2 − 2 x − 3 x + 1 , \begin{aligned} \tan \frac{\theta}{2} & =\frac{\sin \theta}{1+\cos \theta}=\frac{\tan \theta}{\sec \theta+1} \\ & =\frac{\sqrt{\left(\frac{u}{2}\right)^{2}-1}}{\frac{u}{2}+1}=\frac{\sqrt{x^{2}-2 x-3}}{x+1}, \end{aligned} tan2θ=1+cosθsinθ=secθ+1tanθ=2u+1(2u)21 =x+1x22x3 ,
因此
I = 2 3 arctan ⁡ x 2 − 2 x − 3 3 ( x + 1 ) + C . I=\frac{2}{\sqrt{3}} \arctan \frac{\sqrt{x^{2}-2 x-3}}{\sqrt{3}(x+1)}+C . I=3 2arctan3 (x+1)x22x3 +C.
解法二 若令 x 2 − 2 x − 3 = x − t \sqrt{x^{2}-2 x-3}=x-t x22x3 =xt, 则可解出
x = t 2 + 3 2 ( t − 1 ) , d x = t 2 − 2 t − 3 2 ( t − 1 ) 2   d t , x 2 − 2 x − 3 = t 2 + 3 2 ( t − 1 ) − t = − ( t 2 − 2 t − 3 ) 2 ( t − 1 ) . \begin{array}{c} x=\frac{t^{2}+3}{2(t-1)}, \quad \mathrm{d} x=\frac{t^{2}-2 t-3}{2(t-1)^{2}} \mathrm{~d} t, \\ \sqrt{x^{2}-2 x-3}=\frac{t^{2}+3}{2(t-1)}-t=\frac{-\left(t^{2}-2 t-3\right)}{2(t-1)} . \end{array} x=2(t1)t2+3,dx=2(t1)2t22t3 dt,x22x3 =2(t1)t2+3t=2(t1)(t22t3).

于是所求不定积分直接化为有理函数的不定积分:
I = ∫ 2 ( t − 1 ) t 2 + 3 ⋅ 2 ( t − 1 ) − ( t 2 − 2 t − 3 ) ⋅ t 2 − 2 t − 3 2 ( t − 1 ) 2   d t = − ∫ 2 t 2 + 3   d t = − 2 3 arctan ⁡ t 3 + C = 2 3 arctan ⁡ x 2 − 2 x − 3 − x 3 + C . \begin{aligned} I & =\int \frac{2(t-1)}{t^{2}+3} \cdot \frac{2(t-1)}{-\left(t^{2}-2 t-3\right)} \cdot \frac{t^{2}-2 t-3}{2(t-1)^{2}} \mathrm{~d} t \\ & =-\int \frac{2}{t^{2}+3} \mathrm{~d} t=-\frac{2}{\sqrt{3}} \arctan \frac{t}{\sqrt{3}}+C \\ & =\frac{2}{\sqrt{3}} \arctan \frac{\sqrt{x^{2}-2 x-3}-x}{\sqrt{3}}+C . \end{aligned} I=t2+32(t1)(t22t3)2(t1)2(t1)2t22t3 dt=t2+32 dt=3 2arctan3 t+C=3 2arctan3 x22x3 x+C.
注 1 可以证明
arctan ⁡ x 2 − 2 x − 3 − x 3 = arctan ⁡ x 2 − 2 x − 3 3 ( x + 1 ) − π 3 , \arctan \frac{\sqrt{x^{2}-2 x-3}-x}{\sqrt{3}}=\arctan \frac{\sqrt{x^{2}-2 x-3}}{\sqrt{3}(x+1)}-\frac{\pi}{3}, arctan3 x22x3 x=arctan3 (x+1)x22x3 3π,
所以两种解法所得结果是一致的. 此外, 上述结果对 x < 0 x<0 x<0 同样成立.
注 2 相比之下, 解法二优于解法一. 这是因为它所选择的变换能直接化为有理形
式 (而解法一通过三次换元才化为有理形式). 如果改令
x 2 − 2 x − 3 = x + t , \sqrt{x^{2}-2 x-3}=x+t, x22x3 =x+t,
显然有相同效果—两边各自平方后能消去 x 2 x^{2} x2 项, 从而解出 x x x t t t
的有理函数.
一般地,二次三项式 a x 2 + b x + c a x^{2}+b x+c ax2+bx+c 中, 若 a > 0 a>0 a>0, 则可令
a x 2 + b x + c = a x ± t ; \sqrt{a x^{2}+b x+c}=\sqrt{a} x \pm t ; ax2+bx+c =a x±t;
c > 0 c>0 c>0, 还可令
a x 2 + b x + c = x t ± c . \sqrt{a x^{2}+b x+c}=x t \pm \sqrt{c} . ax2+bx+c =xt±c .
这类变换称为欧拉变换.
至此我们已经学过了求不定积分的基本方法,
以及某些特殊类型不定积分的求法.需要指出的是, 通常所说的 “求不定积分”,
是指用初等函数的形式把这个不定积分表示出来.
在这个意义下,并不是任何初等函数的不定积分都能 “求出” 来的.例如 :
∫ e − π 2   d x , ∫ d x ln ⁡ x , ∫ sin ⁡ x x   d x , ∫ 1 − k 2 sin ⁡ 2 x   d x ( 0 < k 2 < 1 ) , \int \mathrm{e}^{-\pi^{2}} \mathrm{~d} x, \int \frac{\mathrm{d} x}{\ln x}, \int \frac{\sin x}{x} \mathrm{~d} x, \int \sqrt{1-k^{2} \sin ^{2} x} \mathrm{~d} x\left(0<k^{2}<1\right), eπ2 dx,lnxdx,xsinx dx,1k2sin2x  dx(0<k2<1),
等等,虽然它们都存在,但却无法用初等函数来表示
(这个结论证明起来是非常难的,刘维尔(Liouville)于 1835 年作出过证明).
因此可以说,
初等函数的原函数不一定是初等函数.在下一章将会知道,这类非初等函数可采用定积分形式来表示.
最后顺便指出,在求不定积分时,还可利用现成的积分表.
在积分表中所有的积分公式是按被积函数分类编排的,
人们只要根据被积函数的类型, 或经过适当变形化为表中列出的类型,
查阅公式即可. 此外, 有些计算器 (例如 TI-92 型) 和电脑软件 (例如
Mathemetica,Maple 等) 也都具有求不定积分的实用功能.
但对于初学者来说,首先应该掌握各种基本的积分方法.
在附录 II 中列出了一份容量不大的积分表,
它大体上是典型例题和习题的总结.列出这份积分表的主要目的是为大家学习后继课程提供方便.
题 8.3
1. 求下列不定积分:
(1) ∫ x 3 x − 1   d x \int \frac{x^{3}}{x-1} \mathrm{~d} x x1x3 dx;
(2) ∫ x − 2 x 2 − 7 x + 12   d x \int \frac{x-2}{x^{2}-7 x+12} \mathrm{~d} x x27x+12x2 dx;
(3) ∫ d x 1 + x 3 \int \frac{\mathrm{d} x}{1+x^{3}} 1+x3dx;
(4) ∫ d x 1 + x 4 \int \frac{\mathrm{d} x}{1+x^{4}} 1+x4dx;
(5) ∫ d x ( x − 1 ) ( x 2 + 1 ) 2 \int \frac{d x}{(x-1)\left(x^{2}+1\right)^{2}} (x1)(x2+1)2dx
(6) ∫ x − 2 ( 2 x 2 + 2 x + 1 ) 2   d x \int \frac{x-2}{\left(2 x^{2}+2 x+1\right)^{2}} \mathrm{~d} x (2x2+2x+1)2x2 dx.
2. 求下列不定积分:
(1) ∫ d x 5 − 3 cos ⁡ x \int \frac{\mathrm{d} x}{5-3 \cos x} 53cosxdx;
(2) ∫ d x 2 + sin ⁡ 2 x \int \frac{\mathrm{d} x}{2+\sin ^{2} x} 2+sin2xdx;
(3) ∫ d x 1 + tan ⁡ x \int \frac{\mathrm{d} x}{1+\tan x} 1+tanxdx;
(4) ∫ x 2 1 + x − x 2   d x \int \frac{x^{2}}{\sqrt{1+x-x^{2}}} \mathrm{~d} x 1+xx2 x2 dx;
(5) ∫ d x x 2 + x \int \frac{\mathrm{d} x}{\sqrt{x^{2}+x}} x2+x dx;
(6) ∫ 1 x 2 1 − x 1 + x   d x \int \frac{1}{x^{2}} \sqrt{\frac{1-x}{1+x}} \mathrm{~d} x x211+x1x  dx.
第八章总练习题
1. 求下列不定积分:
(1) ∫ x − 2 x 3 − 1 x 4   d x \int \frac{\sqrt{x}-2 \sqrt[3]{x}-1}{\sqrt[4]{x}} \mathrm{~d} x 4x x 23x 1 dx;
(2) ∫ x arcsin ⁡ x   d x \int x \arcsin x \mathrm{~d} x xarcsinx dx;
(3) ∫ d x 1 + x \int \frac{\mathrm{d} x}{1+\sqrt{x}} 1+x dx;
(4) ∫ e x i n x sin ⁡ 2 x   d x \int \mathrm{e}^{x i n x} \sin 2 x \mathrm{~d} x exinxsin2x dx;
(5) ∫ 1   d x \int \sqrt{1} \mathrm{~d} x 1  dx;
(6) ∫ d x x x 2 − 1 \int \frac{\mathrm{d} x}{x \sqrt{x^{2}-1}} xx21 dx;
(7) ∫ 1 − tan ⁡ x 1 + tan ⁡ x   d x \int \frac{1-\tan x}{1+\tan x} \mathrm{~d} x 1+tanx1tanx dx;
(8) ∫ x 2 − x ( x − 2 ) 3   d x \int \frac{x^{2}-x}{(x-2)^{3}} \mathrm{~d} x (x2)3x2x dx;
(9) ∫ d x cos ⁡ 4 x \int \frac{\mathrm{d} x}{\cos ^{4} x} cos4xdx;
(10) ∫ sin ⁡ 4 x   d x \int \sin ^{4} x \mathrm{~d} x sin4x dx;
(11) ∫ x − 5 x 3 − 3 x 2 + 4   d x \int \frac{x-5}{x^{3}-3 x^{2}+4} \mathrm{~d} x x33x2+4x5 dx;
(12) ∫ arctan ⁡ ( 1 + x ) d x \int \arctan (1+\sqrt{x}) \mathrm{d} x arctan(1+x )dx;
(13) ∫ x 7 x 4 + 2   d x \int \frac{x^{7}}{x^{4}+2} \mathrm{~d} x x4+2x7 dx;
(14) ∫ tan ⁡ x 1 + tan ⁡ x + tan ⁡ 2 x d x \int \frac{\tan x}{1+\tan x+\tan ^{2} x} d x 1+tanx+tan2xtanxdx;
(15) ∫ x 2 ( 1 − x ) 100   d x \int \frac{x^{2}}{(1-x)^{100}} \mathrm{~d} x (1x)100x2 dx;
(16) ∫ arcsin ⁡ x x 2   d x \int \frac{\arcsin x}{x^{2}} \mathrm{~d} x x2arcsinx dx;
(17) ∫ x ln ⁡ 1 + x 1 − x   d x \int x \ln \frac{1+x}{1-x} \mathrm{~d} x xln1x1+x dx;
(18) ∫ d x sin ⁡ x cos ⁡ 7 x \int \frac{\mathrm{d} x}{\sqrt{\sin x \cos ^{7} x}} sinxcos7x dx;
(19)
∫ e x ( 1 − x 1 + x 2 ) 2   d x \int \mathrm{e}^{x}\left(\frac{1-x}{1+x^{2}}\right)^{2} \mathrm{~d} x ex(1+x21x)2 dx;
(20) I n = ∫ v n u   d x I_{n}=\int \frac{v^{n}}{\sqrt{u}} \mathrm{~d} x In=u vn dx, 其中
u = a 1 + b 1 x , v = a 2 + b 2 x u=a_{1}+b_{1} x, v=a_{2}+b_{2} x u=a1+b1x,v=a2+b2x, 求递推形式解.
2. 求下列不定积分:
(1) ∫ d x x 4 + x 2 + 1 \int \frac{\mathrm{d} x}{x^{4}+x^{2}+1} x4+x2+1dx;
(2)
∫ x 9 ( x 10 + 2 x 5 + 2 ) 2   d x \int \frac{x^{9}}{\left(x^{10}+2 x^{5}+2\right)^{2}} \mathrm{~d} x (x10+2x5+2)2x9 dx;
(3) ∫ x 3 n − 1 ( x 2 n + 1 ) 2   d x \int \frac{x^{3 n-1}}{\left(x^{2 n}+1\right)^{2}} \mathrm{~d} x (x2n+1)2x3n1 dx;
(4) ∫ cos ⁡ 3 x cos ⁡ x + sin ⁡ x d x \int \frac{\cos ^{3} x}{\cos x+\sin x} d x cosx+sinxcos3xdx.
3. 求下列不定积分:
(1) ∫ 1 + x 4 3 x   d x \int \frac{\sqrt[3]{1+\sqrt[4]{x}}}{\sqrt{x}} \mathrm{~d} x x 31+4x  dx;
(2) ∫ d x 1 + x 4 4 \int \frac{\mathrm{d} x}{\sqrt[4]{1+x^{4}}} 41+x4 dx;
(3) ∫ d x x + x 2 − x + 1 \int \frac{\mathrm{d} x}{x+\sqrt{x^{2}-x+1}} x+x2x+1 dx;
(4)
∫ 1 + x 4 ( 1 − x 4 ) 3 2   d x \int \frac{1+x^{4}}{\left(1-x^{4}\right)^{\frac{3}{2}}} \mathrm{~d} x (1x4)231+x4 dx.
4. 周期函数的原函数是否还是周期函数?
5 , 导出下列不定积分对于正整数 n n n 的递推公式:
(1) ∫ d x cos ⁡ n x \int \frac{\mathrm{d} x}{\cos ^{n} x} cosnxdx;
(2) ∫ sin ⁡ n x sin ⁡ x   d x \int \frac{\sin n x}{\sin x} \mathrm{~d} x sinxsinnx dx.
第八章综合自测题

  • 8
    点赞
  • 8
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
资源包主要包含以下内容: ASP项目源码:每个资源包中都包含完整的ASP项目源码,这些源码采用了经典的ASP技术开发,结构清晰、注释详细,帮助用户轻松理解整个项目的逻辑和实现方。通过这些源码,用户可以学习到ASP的基本语法、服务器端脚本编写方法、数据库操作、用户权限管理等关键技术。 数据库设计文件:为了方便用户更好地理解系统的后台逻辑,每个项目中都附带了完整的数据库设计文件。这些文件通常包括数据库结构图、数据表设计文档,以及示例数据SQL脚本。用户可以通过这些文件快速搭建项目所需的数据库环境,并了解各个数据表之间的关系和作用。 详细的开发文档:每个资源包都附有详细的开发文档,文档内容包括项目背景介绍、功能模块说明、系统流程图、用户界面设计以及关键代码解析等。这些文档为用户提供了深入的学习材料,使得即便是从零开始的开发者也能逐步掌握项目开发的全过程。 项目演示与使用指南:为帮助用户更好地理解和使用这些ASP项目,每个资源包中都包含项目的演示文件和使用指南。演示文件通常以视频或图文形展示项目的主要功能和操作流程,使用指南则详细说明了如何配置开发环境、部署项目以及常见问题的解决方法。 毕业设计参考:对于正在准备毕业设计的学生来说,这些资源包是绝佳的参考材料。每个项目不仅功能完善、结构清晰,还符合常见的毕业设计要求和标准。通过这些项目,学生可以学习到如何从零开始构建一个完整的Web系统,并积累丰富的项目经验。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值