数学分析(十二)-数项级数2-正项级数-敛散性判别法2:比式判别法【极限形式:lim_{n→∞}(uₙ₊₁/uₙ)=q,若q<1则级数Σuₙ收敛;若q>1则级数Σuₙ发散】

本文详细介绍了数学分析中正项级数的比式判别法,包括达朗贝尔判别法及其极限形式。通过定理、推论和多个例子说明了如何利用比式判别法判断级数的收敛性和发散性,特别是在极限形式下的应用。
摘要由CSDN通过智能技术生成

根据比较原则, 可以利用已知收玫或者发散级数作为比较对象来判别其他级数的敛散性.

本段所介绍的两个方法是以等比级数作为比较对象而得到的.

定理 12.7 (达朗贝尔判别法, 或称比式判别法)

∑ u n \sum u_{n} un 为正项级数, 且存在某正整数 N 0 N_{0} N0 及常数 q ( 0 < q < 1 ) q(0<q<1) q(0<q<1).

  • (i) 若对一切 n > N 0 n>N_{0} n>N0, 成立不等式
    u n + 1 u n ⩽ q , ( 7 ) \frac{u_{n+1}}{u_{n}} \leqslant q, \quad\quad(7) unun+1q,(7)
    则级数 ∑ u n \sum u_{n} un 收敛.
  • (ii) 若对一切 n > N 0 n>N_{0} n>N0, 成立不等式
    u n + 1 u n ⩾ 1 , ( 8 ) \frac{u_{n+1}}{u_{n}} \geqslant 1,\quad\quad(8) unun+11,(8)
    则级数 ∑ u n \sum u_{n} un 发散.


(i) 不妨设不等式 (7) 对一切 n ⩾ 1 n \geqslant 1 n1 成立,于是有

u 2 u 1 ⩽ q , u 3 u 2 ⩽ q , ⋯   , u n u n − 1 ⩽ q , ⋯   . \frac{u_{2}}{u_{1}} \leqslant q, \quad \frac{u_{3}}{u_{2}} \leqslant q, \cdots, \quad \frac{u_{n}}{u_{n-1}} \leqslant q, \cdots . u1u2q,u2u3q,,un1unq,.

把前 n − 1 n-1 n1 个不等式的左边及右边分别相乘后, 得到

u 2 u 1 ⋅ u 3 u 2 ⋯ ⋯ ⋅ u n u n − 1 ⩽ q n − 1 \frac{u_{2}}{u_{1}} \cdot \frac{u_{3}}{u_{2}} \cdots \cdots \cdot \frac{u_{n}}{u_{n-1}} \leqslant q^{n-1} u1u2u2u3⋯⋯un1

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值