数学分析(十七)-多元函数微分学1-可微性4-可微性几何意义及应用5:近似计算和误差估计【求1.08^{3.96}的近似值】

本文通过例7和例8展示了如何利用线性近似公式进行近似计算和误差估计,如1.08^{3.96}的近似值计算和三角形面积的误差分析。在例7中,求得1.08^{3.96}的近似值为1.32;在例8中,计算了三角形面积的绝对误差限0.13和相对误差限0.5%。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

下面的例 7 和例 8 是利用线性近似公式 (3) 所作的近似计算和误差估计.

例 7
1.0 8 3.96 1.08^{3.96} 1.083.96 的近似值.


f ( x , y ) = x y f(x, y)=x^{y} f(x,y)=xy, 令 x 0 = 1 , y 0 = 4 , Δ x = 0.08 , Δ y = − 0.04 x_{0}=1, y_{0}=4, \Delta x=0.08, \Delta y=-0.04 x0=1,y0=4,Δx=0.08,Δy=0.04. 由公式 (3) 有

1.0 8 3.96 = f ( x 0 + Δ x , y 0 + Δ y ) ≈ f ( 1 , 4 ) + f x ( 1 , 4 ) Δ x + f y ( 1 , 4 ) Δ y = 1 + 4 × 0.08 + 1 4 × ln ⁡ 1 × ( − 0.04 ) = 1 + 0.32 = 1.32. \begin{aligned} 1.08^{3.96} & =f\left(x_{0}+\Delta x, y_{0}+\Delta y\right) \\ & \approx f(1,4)+f_{x}(1,4) \Delta x+f_{y}(1,4) \Delta y \\ &=1+4 \times 0.08+1^{4} \times \ln 1 \times(-0.04) \\ &=1+0.32=1.32 . \end{aligned} 1.083.96=f(x0+Δx,y

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值