数学分析(十八)-隐函数定理及其应用3-几何应用3:曲面的切平面与法线【函数F(x,y,z)在P(x,y,z)的梯度就是等值面F(x,y,z)=0在点P的法向量】

本文介绍了如何利用隐函数定理求解曲面在特定点的切平面和法线方程,并通过具体例子阐述了椭球面的切平面和法线。同时证明了某一类曲面的切平面都经过定点。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

设曲面由方程

F ( x , y , z ) = 0 ( 11 ) F(x, y, z)=0 \quad\quad(11) F(x,y,z)=0(11)

给出, 它在点 P 0 ( x 0 , y 0 , z 0 ) P_{0}\left(x_{0}, y_{0}, z_{0}\right) P0(x0,y0,z0)的某邻域上满足隐函数定理条件 (这里不妨设 F z ( x 0 , y 0 , z 0 ) F_{z}\left(x_{0}, y_{0}, z_{0}\right) Fz(x0,y0,z0) ≠ 0 ) \neq 0) =0). 于是方程 (11) 在点 P 0 P_{0} P0 附近确定惟一连续可微的隐函数 z = f ( x , y ) z=f(x, y) z=f(x,y), 使得 z 0 = z_{0}= z0= f ( x 0 , y 0 ) f\left(x_{0}, y_{0}\right) f(x0,y0), 且

∂ z ∂ x = − F x ( x , y , z ) F z ( x , y , z ) , ∂ z ∂ y = − F y ( x , y , z ) F z ( x , y , z ) . \cfrac{\partial z}{\partial x}=-\cfrac{F_{x}(x, y, z)}{F_{z}(x, y, z)}, \quad \cfrac{\partial z}{\partial y}=-\cfrac{F_{y}(x, y, z)}{F_{z}(x, y, z)} . xz=Fz(x,y,z)Fx(x,y,z),yz=Fz(x,y,z)Fy(x,y,z).

由于在点 P 0 P_{0} P0 附近 (11) 式与 z = f ( x , y ) z=f(x, y) z=f(x,y) 表示同一曲面, 从而该曲面在 P 0 P_{0} P0 处有切平面法线 (第十七章 § 1 § 1 §1 的 (13) 式、(14) 式), 它们的方程分别是

  • 切平面
    z − z 0 = − F x ( x 0 , y 0 , z 0 ) F z ( x 0 , y 0 , z 0 ) ( x − x 0 ) − F y ( x 0 , y 0 , z 0 ) F z ( x 0 , y 0 , z 0 ) ( y − y 0 ) z-z_{0}=-\cfrac{F_{x}\left(x_{0}, y_{0}, z_{0}\right)}{F_{z}\left(x_{0}, y_{0}, z_{0}\right)}\left(x-x_{0}\right)-\cfrac{F_{y}\left(x_{0}, y_{0}, z_{0}\right)}{F_{z}\left(x_{0}, y_{0}, z_{0}\right)}\left(y-y_{0}\right) zz0=Fz(x0,y0,z0)Fx(x0,y0,z0)(xx0)Fz(x0,y0,z0)Fy(x0,y0,z0)(yy0)
  • 法线
    x − x 0 − F x ( x 0 , y 0 , z 0 ) F z ( x 0 , y 0 , z 0 ) = y − y 0 − F y ( x 0 , y 0 , z 0 ) F z ( x 0 , y 0 , z 0 ) = z − z 0 − 1 . \cfrac{x-x_{0}}{-\cfrac{F_{x}\left(x_{0}, y_{0}, z_{0}\right)}{F_{z}\left(x_{0}, y_{0}, z_{0}\right)}}=\cfrac{y-y_{0}}{-\cfrac{F_{y}\left(x_{0}, y_{0}, z_{0}\right)}{F_{z}\left(x_{0}, y_{0}, z_{0}\right)}}=\cfrac{z-z_{0}}{-1} . <
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值