设曲面由方程
F ( x , y , z ) = 0 ( 11 ) F(x, y, z)=0 \quad\quad(11) F(x,y,z)=0(11)
给出, 它在点 P 0 ( x 0 , y 0 , z 0 ) P_{0}\left(x_{0}, y_{0}, z_{0}\right) P0(x0,y0,z0)的某邻域上满足隐函数定理条件 (这里不妨设 F z ( x 0 , y 0 , z 0 ) F_{z}\left(x_{0}, y_{0}, z_{0}\right) Fz(x0,y0,z0) ≠ 0 ) \neq 0) =0). 于是方程 (11) 在点 P 0 P_{0} P0 附近确定惟一连续可微的隐函数 z = f ( x , y ) z=f(x, y) z=f(x,y), 使得 z 0 = z_{0}= z0= f ( x 0 , y 0 ) f\left(x_{0}, y_{0}\right) f(x0,y0), 且
∂ z ∂ x = − F x ( x , y , z ) F z ( x , y , z ) , ∂ z ∂ y = − F y ( x , y , z ) F z ( x , y , z ) . \cfrac{\partial z}{\partial x}=-\cfrac{F_{x}(x, y, z)}{F_{z}(x, y, z)}, \quad \cfrac{\partial z}{\partial y}=-\cfrac{F_{y}(x, y, z)}{F_{z}(x, y, z)} . ∂x∂z=−Fz(x,y,z)Fx(x,y,z),∂y∂z=−Fz(x,y,z)Fy(x,y,z).
由于在点 P 0 P_{0} P0 附近 (11) 式与 z = f ( x , y ) z=f(x, y) z=f(x,y) 表示同一曲面, 从而该曲面在 P 0 P_{0} P0 处有切平面与法线 (第十七章 § 1 § 1 §1 的 (13) 式、(14) 式), 它们的方程分别是
- 切平面
z − z 0 = − F x ( x 0 , y 0 , z 0 ) F z ( x 0 , y 0 , z 0 ) ( x − x 0 ) − F y ( x 0 , y 0 , z 0 ) F z ( x 0 , y 0 , z 0 ) ( y − y 0 ) z-z_{0}=-\cfrac{F_{x}\left(x_{0}, y_{0}, z_{0}\right)}{F_{z}\left(x_{0}, y_{0}, z_{0}\right)}\left(x-x_{0}\right)-\cfrac{F_{y}\left(x_{0}, y_{0}, z_{0}\right)}{F_{z}\left(x_{0}, y_{0}, z_{0}\right)}\left(y-y_{0}\right) z−z0=−Fz(x0,y0,z0)Fx(x0,y0,z0)(x−x0)−Fz(x0,y0,z0)Fy(x0,y0,z0)(y−y0) - 法线
x − x 0 − F x ( x 0 , y 0 , z 0 ) F z ( x 0 , y 0 , z 0 ) = y − y 0 − F y ( x 0 , y 0 , z 0 ) F z ( x 0 , y 0 , z 0 ) = z − z 0 − 1 . \cfrac{x-x_{0}}{-\cfrac{F_{x}\left(x_{0}, y_{0}, z_{0}\right)}{F_{z}\left(x_{0}, y_{0}, z_{0}\right)}}=\cfrac{y-y_{0}}{-\cfrac{F_{y}\left(x_{0}, y_{0}, z_{0}\right)}{F_{z}\left(x_{0}, y_{0}, z_{0}\right)}}=\cfrac{z-z_{0}}{-1} . −<