在第二十章 第2节 中计算第二型曲线积分的开始两个例子中, 读者可能已经看到,
- 在例 1 中, 以 A A A 为起点、 B B B 为终点的曲线积分, 若所沿的路线不同, 则其积分值也不同,
- 但在例 2 中的曲线积分值只与起点和终点有关, 与路线的选取无关.
本段将讨论曲线积分在什么条件下, 它的值与所沿路线的选取无关.
首先,介绍单连通区域的概念.
若对于平面区域 D D D 上任一封闭曲线, 皆可不经过 D D D以外的点而连续收缩于属于 D D D的某一点, 则称此平面区域为单连通区域,否则称为复连通区域.
如图 21-17中, D 1 D_{1} D1 与 D 2 D_{2} D2 是单连通区域, 而 D 3 D_{3} D3 与 D 4 D_{4} D4 则是复连通区域.
单连通区域也可以这样叙述: D D D 内任一封闭曲线所围成的区域内只含有 D D D中的点.
更通俗地说,
- 单连通区域是没有"洞"的区域;
- 复连通区域是有"洞"的区域.
定理 21.12
设 D D D 是单连通闭区域. 若函数 P ( x , y ) , Q ( x , y ) P(x, y), Q(x, y) P(x,y),Q(x,y) 在 D D D内连续, 且具有一阶连续偏导数, 则以下四个条件等价:
- (i) 沿 D D D 内任一按段光滑封闭曲线 L L L, 有
∮ L P d x + Q d y = 0 ; \oint_{L} P \mathrm{~d} x+Q \mathrm{~d} y=0 ; ∮LP dx+Q dy=0; - (ii) 对 D D D 中任一按段光滑曲线 L L L, 曲线积分
∫ L P d x + Q d y \int_{L} P \mathrm{~d} x+Q \mathrm{~d} y ∫LP dx+Q dy
与路线无关, 只与 L L L 的起点及终点有关; - (iii) P d x + Q d y P \mathrm{~d} x+Q \mathrm{~d} y P dx+Q dy 是 D D D 内某一函数 u ( x , y ) u(x, y) u(x,y)的全微分, 即在 D D D 内有
d u = P d x + Q d y ; \mathrm{d} u=P \mathrm{~d} x+Q \mathrm{~d} y ; du=P dx+Q dy; - (iv) 在 D D D 内处处成立
∂ P ∂ y = ∂ Q ∂ x . \cfrac{\partial P}{\partial y}=\cfrac{\partial Q}{\partial x} . ∂y∂P=∂x∂Q.
证
(i) ⇒ \Rightarrow ⇒ (ii)
如图 21-18, 设 A R B ⌢ \overset{\frown}{A R B} ARB⌢ 与 A S B ⌢ \overset{\frown}{A S B} ASB⌢ 为联结点 A , B A, B A,B 的任意两条按段光滑曲线,由 (i) 可推得
∫ R R B ⌢ P d x + Q d y − ∫ A S B ⌢ P d x + Q d y = ∫ R R B ⌢ P d x + Q d y + ∫ R S A ⌢ P d x + Q d y , = ∮ A R B S ⌢ A P d x + Q d y = 0 , \begin{aligned} & \int_{\overset{\frown}{R R B}} P \mathrm{~d} x+Q \mathrm{~d} y-\int_{\overset{\frown}{A S B}} P \mathrm{~d} x+Q \mathrm{~d} y \\ = & \int_{\overset{\frown}{R R B}} P \mathrm{~d} x+Q \mathrm{~d} y+\int_{\overset{\frown}{R S A}} P \mathrm{~d} x+Q \mathrm{~d} y, \\ = & \oint_{\overset{\frown}{A R B S} A} P \mathrm{~d} x+Q \mathrm{~d} y=0, \end{aligned} ==∫RRB⌢P dx+Q dy−∫ASB⌢P dx+Q dy∫RRB⌢P dx+Q dy+∫RSA⌢P dx+Q dy,∮ARBS⌢AP dx+Q dy=0,
所以
∫ A R B ⌢ P d x + Q d y = ∫ A S B ⌢ P d x + Q d y . \int_{\overset{\frown}{A R B}} P \mathrm{~d} x+Q \mathrm{~d} y=\int_{\overset{\frown}{A S B}} P \mathrm{~d} x+Q \mathrm{~d} y . ∫ARB⌢P dx+Q dy=∫ASB⌢P dx+Q dy.
(ii) ⇒ \Rightarrow ⇒ (iii)
设