数学分析(二十一)-重积分3-2:曲线积分与路线的无关性【单连通区域】【①、∮ᴸPdx+Qdy=0;②、∫ᴸPdx+Qdy只与L的起/终点有关;③、du=Pdx+Qdy;④、∂P/∂y=∂Q/∂X;】

在第二十章 第2节 中计算第二型曲线积分的开始两个例子中, 读者可能已经看到,

  • 在例 1 中, 以 A A A 为起点、 B B B 为终点的曲线积分, 若所沿的路线不同, 则其积分值也不同,
  • 但在例 2 中的曲线积分值只与起点和终点有关, 与路线的选取无关.

本段将讨论曲线积分在什么条件下, 它的值与所沿路线的选取无关.

首先,介绍单连通区域的概念.

若对于平面区域 D D D 上任一封闭曲线, 皆可不经过 D D D以外的点而连续收缩于属于 D D D的某一点, 则称此平面区域为单连通区域,否则称为复连通区域.

如图 21-17中, D 1 D_{1} D1 D 2 D_{2} D2 是单连通区域, 而 D 3 D_{3} D3 D 4 D_{4} D4 则是复连通区域.

单连通区域也可以这样叙述: D D D 内任一封闭曲线所围成的区域内只含有 D D D中的点.

更通俗地说,

  • 单连通区域是没有"洞"的区域
  • 复连通区域是有"洞"的区域.

在这里插入图片描述

定理 21.12

D D D 是单连通闭区域. 若函数 P ( x , y ) , Q ( x , y ) P(x, y), Q(x, y) P(x,y),Q(x,y) D D D内连续, 且具有一阶连续偏导数, 则以下四个条件等价:

  • (i) 沿 D D D 内任一按段光滑封闭曲线 L L L, 有
    ∮ L P   d x + Q   d y = 0 ; \oint_{L} P \mathrm{~d} x+Q \mathrm{~d} y=0 ; LP dx+Q dy=0;
  • (ii) 对 D D D 中任一按段光滑曲线 L L L, 曲线积分
    ∫ L P   d x + Q   d y \int_{L} P \mathrm{~d} x+Q \mathrm{~d} y LP dx+Q dy
    与路线无关, 只与 L L L 的起点及终点有关;
  • (iii) P   d x + Q   d y P \mathrm{~d} x+Q \mathrm{~d} y P dx+Q dy D D D 内某一函数 u ( x , y ) u(x, y) u(x,y)的全微分, 即在 D D D 内有
    d u = P   d x + Q   d y ; \mathrm{d} u=P \mathrm{~d} x+Q \mathrm{~d} y ; du=P dx+Q dy;
  • (iv) 在 D D D 内处处成立
    ∂ P ∂ y = ∂ Q ∂ x . \cfrac{\partial P}{\partial y}=\cfrac{\partial Q}{\partial x} . yP=xQ.
    在这里插入图片描述


(i) ⇒ \Rightarrow (ii)
如图 21-18, 设 A R B ⌢ \overset{\frown}{A R B} ARB A S B ⌢ \overset{\frown}{A S B} ASB 为联结点 A , B A, B A,B 的任意两条按段光滑曲线,由 (i) 可推得
∫ R R B ⌢ P   d x + Q   d y − ∫ A S B ⌢ P   d x + Q   d y = ∫ R R B ⌢ P   d x + Q   d y + ∫ R S A ⌢ P   d x + Q   d y , = ∮ A R B S ⌢ A P   d x + Q   d y = 0 , \begin{aligned} & \int_{\overset{\frown}{R R B}} P \mathrm{~d} x+Q \mathrm{~d} y-\int_{\overset{\frown}{A S B}} P \mathrm{~d} x+Q \mathrm{~d} y \\ = & \int_{\overset{\frown}{R R B}} P \mathrm{~d} x+Q \mathrm{~d} y+\int_{\overset{\frown}{R S A}} P \mathrm{~d} x+Q \mathrm{~d} y, \\ = & \oint_{\overset{\frown}{A R B S} A} P \mathrm{~d} x+Q \mathrm{~d} y=0, \end{aligned} ==RRBP dx+Q dyASBP dx+Q dyRRBP dx+Q dy+RSAP dx+Q dy,ARBSAP dx+Q dy=0,

所以
∫ A R B ⌢ P   d x + Q   d y = ∫ A S B ⌢ P   d x + Q   d y . \int_{\overset{\frown}{A R B}} P \mathrm{~d} x+Q \mathrm{~d} y=\int_{\overset{\frown}{A S B}} P \mathrm{~d} x+Q \mathrm{~d} y . ARBP dx+Q dy=ASBP dx+Q dy.
在这里插入图片描述
(ii) ⇒ \Rightarrow (iii)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值