数学分析(二十一)-重积分6-重积分的应用2:质心

二、质心
V V V 是密度函数为 ρ ( x , y , z ) \rho(x, y, z) ρ(x,y,z) 的空间物体, ρ ( x , y , z ) \rho(x, y, z) ρ(x,y,z) V V V
上连续. 为求得 V V V 的质心坐标公式, 先对 V V V 作分割 T T T, 在属于分割 T T T
的每一小块 v i v_{i} vi 上任取一点
( ξ i , η i , ζ i ) \left(\xi_{i}, \eta_{i}, \zeta_{i}\right) (ξi,ηi,ζi), 于是小块 v i v_{i} vi 的质量可以
ρ ( ξ i , η i , ζ i ) Δ v i \rho\left(\xi_{i}, \eta_{i}, \zeta_{i}\right) \Delta v_{i} ρ(ξi,ηi,ζi)Δvi 近似代替.
若把每一小块看作质量集中在
( ξ i , η i , ζ i ) \left(\xi_{i}, \eta_{i}, \zeta_{i}\right) (ξi,ηi,ζi)的质点时, 整个物体就可用这
n n n 个质点的质点系来近似代替. 由于质点系的质心坐标公式为
x ˉ n = ∑ i = 1 n ξ i ρ ( ξ i , η i , ζ i ) Δ v i ∑ i = 1 n ρ ( ξ i , η i , ζ i ) Δ v i , y ˉ n = ∑ i = 1 n η i ρ ( ξ i , η i , ζ i ) Δ v i ∑ i = 1 n ρ ( ξ i , η i , ζ i ) Δ v i , z ˉ n = ∑ i = 1 n ζ i ρ ( ξ i , η i , ζ i ) Δ v i ∑ i = 1 n ρ ( ξ i , η i , ζ i ) Δ v i . \bar{x}_{n}=\frac{\sum_{i=1}^{n} \xi_{i} \rho\left(\xi_{i}, \eta_{i}, \zeta_{i}\right) \Delta v_{i}}{\sum_{i=1}^{n} \rho\left(\xi_{i}, \eta_{i}, \zeta_{i}\right) \Delta v_{i}}, \quad \bar{y}_{n}=\frac{\sum_{i=1}^{n} \eta_{i} \rho\left(\xi_{i}, \eta_{i}, \zeta_{i}\right) \Delta v_{i}}{\sum_{i=1}^{n} \rho\left(\xi_{i}, \eta_{i}, \zeta_{i}\right) \Delta v_{i}}, \quad \bar{z}_{n}=\frac{\sum_{i=1}^{n} \zeta_{i} \rho\left(\xi_{i}, \eta_{i}, \zeta_{i}\right) \Delta v_{i}}{\sum_{i=1}^{n} \rho\left(\xi_{i}, \eta_{i}, \zeta_{i}\right) \Delta v_{i}} . xˉn=i=1nρ(ξi,ηi,ζi)Δvii=1nξiρ(ξi,ηi,ζi)Δvi,yˉn=i=1nρ(ξi,ηi,ζi)Δvii=1nηiρ(ξi,ηi,ζi)Δvi,zˉn=i=1nρ(ξi,ηi,ζi)Δvii=1nζiρ(ξi,ηi,ζi)Δvi.
∥ T ∥ → 0 \|T\| \rightarrow 0 T0 时, 我们很自然地把
x ˉ n , y ˉ n , z ˉ n \bar{x}_{n}, \bar{y}_{n}, \bar{z}_{n} xˉn,yˉn,zˉn 的极限
x ˉ , y ˉ , z ˉ \bar{x}, \bar{y}, \bar{z} xˉ,yˉ,zˉ 定义为 V V V 的质心坐标, 即
x ˉ = ∭ V x ρ ( x , y , z ) d V ∭ V ρ ( x , y , z ) d V , y ˉ = ∭ V y ρ ( x , y , z ) d V ∭ V ρ ( x , y , z ) d V , z ˉ = ∭ V z ρ ( x , y , z ) d V ∭ V ρ ( x , y , z ) d V . \bar{x}=\frac{\iiint_{V} x \rho(x, y, z) \mathrm{d} V}{\iiint_{V} \rho(x, y, z) \mathrm{d} V}, \quad \bar{y}=\frac{\iiint_{V} y \rho(x, y, z) \mathrm{d} V}{\iiint_{V} \rho(x, y, z) \mathrm{d} V}, \quad \bar{z}=\frac{\iiint_{V} z \rho(x, y, z) \mathrm{d} V}{\iiint_{V} \rho(x, y, z) \mathrm{d} V} . xˉ=Vρ(x,y,z)dVVxρ(x,y,z)dV,yˉ=Vρ(x,y,z)dVVyρ(x,y,z)dV,zˉ=Vρ(x,y,z)dVVzρ(x,y,z)dV.
当物体 V V V 的密度均匀即 ρ \rho ρ 为常数时, 则有
x ˉ = 1 Δ V ∭ V x   d V , y ˉ = 1 Δ V ∭ V y   d V , z ˉ = 1 Δ V ∭ V z   d V , \bar{x}=\frac{1}{\Delta V} \iiint_{V} x \mathrm{~d} V, \quad \bar{y}=\frac{1}{\Delta V} \iiint_{V} y \mathrm{~d} V, \quad \bar{z}=\frac{1}{\Delta V} \iiint_{V} z \mathrm{~d} V, xˉ=ΔV1Vx dV,yˉ=ΔV1Vy dV,zˉ=ΔV1V

  • 22
    点赞
  • 16
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值