设
A ( x , y , z ) = ( P ( x , y , z ) , Q ( x , y , z ) , R ( x , y , z ) ) \boldsymbol{A}(x, y, z)=(P(x, y, z), Q(x, y, z), R(x, y, z)) A(x,y,z)=(P(x,y,z),Q(x,y,z),R(x,y,z))
为空间区域 V V V 上的向量函数, 对 V V V 上每一点 ( x , y , z ) (x, y, z) (x,y,z), 定义数量函数
D ( x , y , z ) = ∂ P ∂ x + ∂ Q ∂ y + ∂ R ∂ z , D(x, y, z)=\cfrac{\partial P}{\partial x}+\cfrac{\partial Q}{\partial y}+\cfrac{\partial R}{\partial z}, D(x,y,z)=∂x∂P+∂y∂Q+∂z∂R,
称它为向量函数 A \boldsymbol{A} A 在 ( x , y , z ) (x, y, z) (x,y,z) 处的散度, 记作
D ( x , y , z ) = div A ( x , y , z ) ① D(x, y, z)=\operatorname{div} \boldsymbol{A}(x, y, z)^{①} D(x,y,z)=divA(x,y,z)①
①:div 是 divergence (散度) 一词的缩写。
设 n 0 = ( cos α , cos β , cos γ ) \boldsymbol{n}_{0}=(\cos \alpha, \cos \beta, \cos \gamma) n0=(cosα,cosβ,cosγ)为曲面的单位法向量, 则 d S = n 0 d S \mathrm{d} \boldsymbol{S}=\boldsymbol{n}_{0} \mathrm{~d} S dS=n0 dS
就称为曲面的面积元素向量. 于是高斯公式可写成如下向量形式:
∭ V div A d V = ∯ S A ⋅ d S . ( 1 ) \iiint_{V} \operatorname{div} A \mathrm{~d} V=\oiint_{S} A \cdot \mathrm{d} S . \quad\quad(1) ∭VdivA dV=∬SA⋅dS.(1)
在 V V V 中任取一点 M 0 M_{0} M0, 对 (1) 式中的三重积分应用中值定理, 得
∭ V div A d V = div