数学分析(二)-数列极限3-数列极限存在的条件2-单调有界定理1:单调有界定理(在实数系中,有界的单调数列必有极限)【有上/下界的递增/减数列必有极限,且其极限即为它的上/下确界】

本文详细介绍了数学分析中的单调有界定理,证明了在实数系中,有界的单调数列必有极限,并通过三个具体例子说明了该定理的应用,涉及递增和递减数列的收敛性质及其极限计算。
摘要由CSDN通过智能技术生成

定理 2.9 (单调有界定理)

在实数系中,有界的单调数列必有极限.


不妨设 { a n } \left\{a_{n}\right\} { an} 为有上界的递增数列. 由确界原理, 数列 { a n } \left\{a_{n}\right\} { an}上确界, 记 a = sup ⁡ { a n } a=\sup \left\{a_{n}\right\} a=sup{ an}.

下面证明 a a a 就是 { a n } \left\{a_{n}\right\} { an} 的极限.

事实上, 任给 ε > 0 \varepsilon>0 ε>0, 按上确界的定义, 存在数列 { a n } \left\{a_{n}\right\} { an}中某一项 a N a_{N} aN, 使得 a − ε < a N a-\varepsilon<a_{N} aε<aN. 又由 { a n } \left\{a_{n}\right\} { an} 的递增性,当 n ⩾ N n \geqslant N nN 时,有

a − ε < a N ⩽ a n . a-\varepsilon<a_{N} \leqslant a_{n} . aε<aNan.

另一方面, 由于 a a a { a n } \left\{a_{n}\right\} { an} 的一个上界, 故对一切 a n a_{n} an, 都有 a n ⩽ a < a + ε a_{n} \leqslant a<a+\varepsilon ana<a+ε. 所以当 n ⩾ N n \geqslant N nN时, 有

a − ε < a n < a + ε , a-\varepsilon<a_{n}<a+\varepsilon, aε<an<a+ε,

这就证得 lim ⁡ n → ∞ a n = a \lim \limits_{n \rightarrow \infty} a_{n}=a nliman=a.

同理可证有下界的递减数列必有极限, 且其极限即为它的下确界.

例 1
a n = 1 + 1 2 α + ⋯ + 1 n α , α > 1 a_{n}=1+\cfrac{1}{2^{\alpha}}+\cdots+\cfrac{1}{n^{\alpha}}, \quad\quad \alpha>1 an=1+2α1++nα1,α>1.

证明: { a n } \left\{a_{n} \}\right. { an} 收敛.


显然 { a n } \left\{a_{n}\right\} { an} 是递增数列. 因为当 n ⩾ 2 n \geqslant 2 n2 时,

a 20 = 1 + 1 2 α + ⋯ + 1 ( 2 n ) α = ( 1 + 1 3 α + ⋯ + 1 ( 2 n − 1 ) α

springboot100基于Springboot+Vue精准扶贫管理系统-毕业源码案例设计 1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md或论文文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。 5、资源来自互联网采集,如有侵权,私聊博主删除。 6、可私信博主看论文后选择购买源代码。 1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md或论文文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。 5、资源来自互联网采集,如有侵权,私聊博主删除。 6、可私信博主看论文后选择购买源代码。 1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md或论文文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。 5、资源来自互联网采集,如有侵权,私聊博主删除。 6、可私信博主看论文后选择购买源代码。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值