定理 2.9 (单调有界定理)
在实数系中,有界的单调数列必有极限.
证
不妨设 { a n } \left\{a_{n}\right\} {
an} 为有上界的递增数列. 由确界原理, 数列 { a n } \left\{a_{n}\right\} {
an} 有上确界, 记 a = sup { a n } a=\sup \left\{a_{n}\right\} a=sup{
an}.
下面证明 a a a 就是 { a n } \left\{a_{n}\right\} { an} 的极限.
事实上, 任给 ε > 0 \varepsilon>0 ε>0, 按上确界的定义, 存在数列 { a n } \left\{a_{n}\right\} { an}中某一项 a N a_{N} aN, 使得 a − ε < a N a-\varepsilon<a_{N} a−ε<aN. 又由 { a n } \left\{a_{n}\right\} { an} 的递增性,当 n ⩾ N n \geqslant N n⩾N 时,有
a − ε < a N ⩽ a n . a-\varepsilon<a_{N} \leqslant a_{n} . a−ε<aN⩽an.
另一方面, 由于 a a a 是 { a n } \left\{a_{n}\right\} { an} 的一个上界, 故对一切 a n a_{n} an, 都有 a n ⩽ a < a + ε a_{n} \leqslant a<a+\varepsilon an⩽a<a+ε. 所以当 n ⩾ N n \geqslant N n⩾N时, 有
a − ε < a n < a + ε , a-\varepsilon<a_{n}<a+\varepsilon, a−ε<an<a+ε,
这就证得 lim n → ∞ a n = a \lim \limits_{n \rightarrow \infty} a_{n}=a n→∞liman=a.
同理可证有下界的递减数列必有极限, 且其极限即为它的下确界.
例 1
设 a n = 1 + 1 2 α + ⋯ + 1 n α , α > 1 a_{n}=1+\cfrac{1}{2^{\alpha}}+\cdots+\cfrac{1}{n^{\alpha}}, \quad\quad \alpha>1 an=1+2α1+⋯+nα1,α>1.
证明: { a n } \left\{a_{n} \}\right. { an} 收敛.
证
显然 { a n } \left\{a_{n}\right\} {
an} 是递增数列. 因为当 n ⩾ 2 n \geqslant 2 n⩾2 时,
a 20 = 1 + 1 2 α + ⋯ + 1 ( 2 n ) α = ( 1 + 1 3 α + ⋯ + 1 ( 2 n − 1 ) α