数学分析(五)-导数和微分2-求导法则2-反函数的导数2:利用反函数导数求解直接函数的导数问题【(aˣ)´=aˣlna】【(arcsinx)´=1/(siny)´,其中:y=arcsinx】

本文详细证明了反函数的导数公式,如(aˣ)′=axlna和(arcsinx)′=1/(siny)的推导过程,并展示了如何利用这些公式解决直接函数的导数问题。具体证明了(i) (ax)的导数为axlna,特别地(ex)的导数为ex;(ii) (arcsinx)的导数为1-x^2/1;(iii) (arctanx)的导数为1+x^2/1以及(arccotx)的导数为-1+x^2/1。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

例 6
证明:
(i) ( a x ) ′ = a x ln ⁡ a ( \left(a^{x}\right)^{\prime}=a^{x} \ln a( (ax)=axlna( 其中 a > 0 , a ≠ 1 ) a>0, a \neq 1) a>0,a=1),特别地, ( e x ) ′ = e x \left(\mathrm{e}^{x}\right)^{\prime}=\mathrm{e}^{x} (ex)=ex.
(ii) ( arcsin ⁡ x ) ′ = 1 1 − x 2 , ( arccos ⁡ x ) ′ = − 1 1 − x 2 (\arcsin x)^{\prime}=\cfrac{1}{\sqrt{1-x^{2}}},(\arccos x)^{\prime}=-\cfrac{1}{\sqrt{1-x^{2}}} (arcsinx)=1x2 1,(arccosx)=1x2 1

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值