例 6
证明:
(i) ( a x ) ′ = a x ln a ( \left(a^{x}\right)^{\prime}=a^{x} \ln a( (ax)′=axlna( 其中 a > 0 , a ≠ 1 ) a>0, a \neq 1) a>0,a=1),特别地, ( e x ) ′ = e x \left(\mathrm{e}^{x}\right)^{\prime}=\mathrm{e}^{x} (ex)′=ex.
(ii) ( arcsin x ) ′ = 1 1 − x 2 , ( arccos x ) ′ = − 1 1 − x 2 (\arcsin x)^{\prime}=\cfrac{1}{\sqrt{1-x^{2}}},(\arccos x)^{\prime}=-\cfrac{1}{\sqrt{1-x^{2}}} (arcsinx)′=1−x21,(arccosx)′=−1−x21
数学分析(五)-导数和微分2-求导法则2-反函数的导数2:利用反函数导数求解直接函数的导数问题【(aˣ)´=aˣlna】【(arcsinx)´=1/(siny)´,其中:y=arcsinx】
于 2024-04-11 22:49:17 首次发布