数学分析(九)-定积分1-定积分概念2-定积分的定义2-1:积分/黎曼和【设T={Δ₁…Δₙ} 为对定义域[a,b]的一个分割,任取点ξᵢ∈Δᵢ,称∑f(ξᵢ)Δᵢ为f在[a,b]上的积分/黎曼和】

本文介绍了数学分析中定积分的概念,特别是黎曼和的定义。通过例子展示了如何利用黎曼和求解抛物线 y=x² 在区间 [0,1] 上曲边三角形的面积,解释了积分和与分割方式及选取点的关系,并通过等分分割计算了面积的极限值为 3/1。" 51934449,5515899,随机投影与Johnson-Lindenstrauss降维在机器学习中的应用,"['机器学习', 'numpy', 'python', 'scikit-learn', '降维']
摘要由CSDN通过智能技术生成

定义 2

f f f 是定义在 [ a , b ] [a, b] [a,b] 上的一个函数. 对于 [ a , b ] [a, b] [a,b] 的一个分割 T = ∣ Δ 1 T=\mid \Delta_{1} T=∣Δ1, Δ 2 , ⋯   , Δ n } \left.\Delta_{2}, \cdots, \Delta_{n}\right\} Δ2,,Δn}, 任取点 ξ i ∈ Δ i , i = 1 , 2 , ⋯   , n \xi_{i} \in \Delta_{i}, i=1,2, \cdots, n ξiΔi,i=1,2,,n, 并作和式

∑ i = 1 n f ( ξ i ) Δ x i \sum_{i=1}^{n} f\left(\xi_{i}\right) \Delta x_{i} i=1nf(ξi)Δx

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值