定理 9.15 (可积的第二充要条件) 函数 f f f 在 [ a , b ] [a, b] [a,b] 上可积的充要条件是:任给 ε > 0 \varepsilon>0 ε>0, 总存在某一分割 T T T,使得 S ( T ) − s ( T ) < ε , 即 ∑ i = 1 n ω i Δ x i < ε . S(T)-s(T)<\varepsilon \text {, 即 } \sum_{i=1}^{n} \omega_{i} \Delta x_{i}<\varepsilon . S(T)−s(T)<ε, 即 i=1∑n