数学分析(九)-定积分3-4-可积性理论2-2:可积的第二充要条件【函数f在[a,b]上可积充要条件:∀ε>0,总存在某一分割T,使得S(T)−s(T)=∑ωᵢΔxᵢ<ε】【ωᵢ=Mᵢ−mᵢ】

定理9.15阐述了函数在[a,b]上可积的充要条件,即对于任何给定的ε>0,都存在分割T使得S(T)−s(T)<ε,其中ωi=Mi−mi是函数在每个区间Δi的振幅。证明包括必要性和充分性两部分,展示了可积性的关键性质。" 90483236,5817479,Unity Shader优化:加载与编译策略,"['Unity3D', '图形渲染', '游戏开发', '性能优化', 'Shader编程']

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

定理 9.15 (可积的第二充要条件)

函数 f f f [ a , b ] [a, b] [a,b] 上可积的充要条件是:任给 ε > 0 \varepsilon>0 ε>0, 总存在某一分割 T T T,使得

S ( T ) − s ( T ) < ε , 即  ∑ i = 1 n ω i Δ x i < ε . S(T)-s(T)<\varepsilon \text {, 即 } \sum_{i=1}^{n} \omega_{i} \Delta x_{i}<\varepsilon . S(T)s(T)<ε i=1n

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值