复变函数论3-复变函数的积分1-1-复变函数积分的定义3:积分路径【J=∫ᶜf(z)dz中的C称为积分路径;一般不把J写成∫ₐᵇf(z)dz的形式,因为J的值不仅和a,b有关,还和积分路径C有关】

本文详细介绍了复变函数积分的概念,强调积分值不仅取决于起点和终点,更关键的是积分路径。通过定义 3.1,阐述了如何在分点无限增多且弧段长度趋于零的情况下,判断函数f(z)是否可积,并指出积分路径C对积分结果J的重要性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

定义 3.1

有向曲线 C C C :
z = z ( t ) ( α ⩽ t ⩽ β ) z=z(t) \quad(\alpha \leqslant t \leqslant \beta) z=z(t)(αtβ)
a = z ( α ) a=z(\alpha) a=z(α) 为起点, b = z ( β ) b=z(\beta) b=z(β) 为终点, f ( z ) f(z) f(z) 沿 C C C 有定义. 顺着 C C C a a a b b b 的方向在 C C C 上取分点:

a = z 0 , z 1 , ⋯   , z n − 1 , z n = b a=z_{0}, z_{1}, \cdots, z_{n-1}, z_{n}=b a=z0,z1,,z

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值