定义 3.1
设有向曲线 C C C :
z = z ( t ) ( α ⩽ t ⩽ β ) z=z(t) \quad(\alpha \leqslant t \leqslant \beta) z=z(t)(α⩽t⩽β)
以 a = z ( α ) a=z(\alpha) a=z(α) 为起点, b = z ( β ) b=z(\beta) b=z(β) 为终点, f ( z ) f(z) f(z) 沿 C C C 有定义. 顺着 C C C 从 a a a 到 b b b 的方向在 C C C 上取分点:
a = z 0 , z 1 , ⋯ , z n − 1 , z n = b a=z_{0}, z_{1}, \cdots, z_{n-1}, z_{n}=b a=z0,z1,⋯,z