复变函数论5-1-解析函数的洛朗展式1-双边幂级数3-双边幂级数性质3:双边幂级数的收敛函数f(z)在收敛圆环域H内可逐项求导p次(p=1,2,⋯)

该博客探讨了复变函数论中的双边幂级数,特别是在收敛圆环域H内,如何逐项求导。定理4.14和5.1阐述了双边幂级数的解析性质,表明在H内,双边幂级数不仅绝对收敛且内闭一致收敛,而且可以逐项求导任意阶次。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

定理 4.14

(1)

幂级数

∑ n = 0 ∞ c n ( z − a ) n ( 4.6 ) \sum_{n=0}^{\infty} c_{n}(z-a)^{n} \quad\quad(4.6) n=0cn(za)n(4.6)

的和函数 f ( z ) f(z) f(z) 在其收敛圆 K : ∣ z − a ∣ < R ( 0 < R ⩽ + ∞ ) K:|z-a|<R (0<R \leqslant+\infty) K:za<R(0<R+) 内解析.

(2)

K K K 内, 幂级数 (4.6) 可以逐项求导至任意阶, 即

f ( p ) ( z ) = p ! c p + ( p + 1 ) p ⋯ 2 c p + 1 ( z − a ) + ⋯ + n ( n − 1 ) ⋯ ( n − p + 1 ) c n ( z − a ) n − p + ⋯ ( 4.7 ) ( p = 1 , 2 , ⋯   ) \begin{aligned} f^{(p)}(z)= & p ! c_{p}+(p+1) p \cdots 2 c_{p+1}(z-a)+\cdots+ n(n-1) \cdots(n-p+1) c_{n}(z-a)^{n-p}+\cdots \quad\quad(4.7)\\ &\quad(p=1,2, \cdots) \end{aligned} f(p)(z)=p!cp+(p+1)p2cp+1(za)++n(n1)(np+

内容概要:本文详细探讨了基于樽海鞘算法(SSA)优化的极限学习机(ELM)在回归预测任务中的应用,并与传统的BP神经网络、广义回归神经网络(GRNN)以及未优化的ELM进行了性能对比。首先介绍了ELM的基本原理,即通过随机生成输入层与隐藏层之间的连接权重及阈值,仅需计算输出权重即可快速完成训练。接着阐述了SSA的工作机制,利用樽海鞘群体觅食行为优化ELM的输入权重和隐藏层阈值,从而提高模型性能。随后分别给出了BP、GRNN、ELM和SSA-ELM的具体实现代码,并通过波士顿房价数据集和其他工业数据集验证了各模型的表现。结果显示,SSA-ELM在预测精度方面显著优于其他三种方法,尽管其训练时间较长,但在实际应用中仍具有明显优势。 适合人群:对机器学习尤其是回归预测感兴趣的科研人员和技术开发者,特别是那些希望深入了解ELM及其优化方法的人。 使用场景及目标:适用于需要高效、高精度回归预测的应用场景,如金融建模、工业数据分析等。主要目标是提供一种更为有效的回归预测解决方案,尤其是在处理大规模数据集时能够保持较高的预测精度。 其他说明:文中提供了详细的代码示例和性能对比图表,帮助读者更好地理解和复现实验结果。同时提醒使用者注意SSA参数的选择对模型性能的影响,建议进行参数敏感性分析以获得最佳效果。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值