复变函数论5-1-解析函数的洛朗展式1-双边幂级数3-双边幂级数性质3:双边幂级数的收敛函数f(z)在收敛圆环域H内可逐项求导p次(p=1,2,⋯)

该博客探讨了复变函数论中的双边幂级数,特别是在收敛圆环域H内,如何逐项求导。定理4.14和5.1阐述了双边幂级数的解析性质,表明在H内,双边幂级数不仅绝对收敛且内闭一致收敛,而且可以逐项求导任意阶次。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

定理 4.14

(1)

幂级数

∑ n = 0 ∞ c n ( z − a ) n ( 4.6 ) \sum_{n=0}^{\infty} c_{n}(z-a)^{n} \quad\quad(4.6) n=0cn(za)n(4.6)

的和函数 f ( z ) f(z) f(z) 在其收敛圆 K : ∣ z − a ∣ < R ( 0 < R ⩽ + ∞ ) K:|z-a|<R (0<R \leqslant+\infty) K:za<R(0<R+) 内解析.

(2)

K K K 内, 幂级数 (4.6) 可以逐项求导至任意阶, 即

f ( p ) ( z ) = p ! c p + ( p + 1 ) p ⋯ 2 c p + 1 ( z − a ) + ⋯ + n ( n − 1 ) ⋯ ( n − p + 1 ) c n ( z − a ) n − p + ⋯ ( 4.7 ) ( p = 1 , 2 , ⋯   ) \begin{aligned} f^{(p)}(z)= & p ! c_{p}+(p+1) p \cdots 2 c_{p+1}(z-a)+\cdots+ n(n-1) \cdots(n-p+1) c_{n}(z-a)^{n-p}+\cdots \quad\quad(4.7)\\ &\quad(p=1,2, \cdots) \end{aligned} f(p)(z)=p!cp+(p+1)p2cp+1(za)++n(n1)(np+

内容概要:本文详细介绍了施耐德M580系列PLC的存储结构、系统硬件架构、上电写入程序及CPU冗余特性。在存储结构方面,涵盖拓扑寻址、Device DDT远程寻址以及寄存器寻址三种方,详细解释了不同类型的寻址方法及其应用场景。系统硬件架构部分,阐述了最小系统的构建要素,包括CPU、机架和模块的选择与配置,并介绍了常见的系统拓扑结构,如简单的机架间拓扑和远程子站以太网菊花链等。上电写入程序环节,说明了通过USB和以太网两种接口进行程序下载的具体步骤,特别是针对初下载时IP地址的设置方法。最后,CPU冗余部分重点描述了热备功能的实现机制,包括IP通讯地址配置和热备拓扑结构。 适合人群:从事工业自动化领工作的技术人员,特别是对PLC编程及系统集成有一定了解的工程师。 使用场景及目标:①帮助工程师理解施耐德M580系列PLC的寻址机制,以便更好地进行模块配置和编程;②指导工程师完成最小系统的搭建,优化系统拓扑结构的设计;③提供详细的上电写入程序指南,确保程序下载顺利进行;④解释CPU冗余的实现方,提高系统的稳定性和可靠性。 其他说明:文中还涉及一些特殊模块的功能介绍,如定时器事件和Modbus串口通讯模块,这些内容有助于用户深入了解M580系列PLC的高级应用。此外,附录部分提供了远程子站和热备冗余系统的实物图片,便于用户直观理解相关概念。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值