复变函数论5-1-解析函数的洛朗展式1-双边幂级数3-双边幂级数性质3:双边幂级数的收敛函数f(z)在收敛圆环域H内可逐项求导p次(p=1,2,⋯)

该博客探讨了复变函数论中的双边幂级数,特别是在收敛圆环域H内,如何逐项求导。定理4.14和5.1阐述了双边幂级数的解析性质,表明在H内,双边幂级数不仅绝对收敛且内闭一致收敛,而且可以逐项求导任意阶次。
摘要由CSDN通过智能技术生成

定理 4.14

(1)

幂级数

∑ n = 0 ∞ c n ( z − a ) n ( 4.6 ) \sum_{n=0}^{\infty} c_{n}(z-a)^{n} \quad\quad(4.6) n=0cn(za)n(4.6)

的和函数 f ( z ) f(z) f(z) 在其收敛圆 K : ∣ z − a ∣ < R ( 0 < R ⩽ + ∞ ) K:|z-a|<R (0<R \leqslant+\infty) K:za<R(0<R+) 内解析.

(2)

K K K 内, 幂级数 (4.6) 可以逐项求导至任意阶, 即

f ( p ) ( z ) = p ! c p + ( p + 1 ) p ⋯ 2 c p + 1 ( z − a ) + ⋯ + n ( n − 1 ) ⋯ ( n − p + 1 ) c n ( z − a ) n − p + ⋯ ( 4.7 ) ( p = 1 , 2 , ⋯   ) \begin{aligned} f^{(p)}(z)= & p ! c_{p}+(p+1) p \cdots 2 c_{p+1}(z-a)+\cdots+ n(n-1) \cdots(n-p+1) c_{n}(z-a)^{n-p}+\cdots \quad\quad(4.7)\\ &\quad(p=1,2, \cdots) \end{aligned} f(p)(z)=p!cp+(p+1)p2cp+1(za)++n(n1)(np+

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值