复变函数论5-1-解析函数的洛朗展式-4-解析函数在孤立奇点邻域内的洛朗展式2:洛朗级数展开【如果a为f(z)的一个孤立奇点,则必存在正数R使得f在点a的去心邻域0<∣z−a∣<R内可展成洛朗级数】

本文介绍了复变函数在孤立奇点邻域内的洛朗级数展开方法,包括直接展开法和间接展开法,并通过多个例子详细解释了如何求解洛朗级数,如zsinz、ex+ex1等函数的洛朗展式。

如果 a a a 为函数 f ( z ) f(z) f(z) 的一个孤立奇点, 则必存在正数 R R R, 使得 f ( z ) f(z) f(z)在点 a a a 的去心邻域 K \ { a } : 0 < ∣ z − a ∣ < R K \backslash\{a\}: 0<|z-a|<R K\{a}:0<za<R 内可展成洛朗级数.

常用展开方法:

(1) 直接展开法.

利用洛朗定理的公式计算系数 c n c_{n} cn

c n = 1 2 π i ∫ Γ f ( ζ ) ( ζ − a ) n + 1   d ζ ( n = 0 , ± 1 , ± 2 , ⋯   ) c_{n}=\cfrac{1}{2 \pi \mathrm{i}} \int_{\Gamma} \cfrac{f(\zeta)}{(\zeta-a)^{n+1}} \mathrm{~d} \zeta \quad(n=0, \pm 1, \pm 2, \cdots) cn=2πi1Γ(ζa)n+1f(ζ) dζ(n=0,±1,±2,)

然后写出洛朗展式 f ( z ) = ∑ n = − ∞ ∞ c n ( z − a ) n f(z)=\sum_{n=-\infty}^{\infty} c_{n}(z-a)^{n} f(z)=n=cn(za)n. 缺点: 计算往往很麻烦.

(2) 间接展开法.

根据正、负幕项组成的级数的惟一性, 可用代数运算、变量代换,并利用已知的泰勒展式去求所需要的洛朗展式.优点: 简捷、快速.

例 5.2
求函数 f ( z ) = 1 ( z − 1 ) ( z − 3 ) 2 f(z)=\cfrac{1}{(z-1)(z-3)^{2}} f(z)=(z1)(z3)21 分别在(1) 0 < ∣ z − 1 ∣ < 2 0<|z-1|<2 0<z1∣<2; (2) 2 < ∣ z − 1 ∣ < 2<|z-1|< 2<z1∣< + ∞ +\infty + 内的洛朗展式.


(1) 当 0 < ∣ z − 1 ∣ < 2 0<|z-1|<2 0<z1∣<2 时, ∣ z − 1 2 ∣ < 1 \left|\cfrac{z-1}{2}\right|<1 2z1 <1, 故

1 z − 3 = − 1 2 1 1 − z − 1 2 = − 1 2 ∑ n = 0 ∞ ( z − 1 2 ) n = − ∑ n = 0 ∞ ( z − 1 ) n 2 n + 1 . \cfrac{1}{z-3}=-\cfrac{1}{2} \cfrac{1}{1-\cfrac{z-1}{2}}=-\cfrac{1}{2} \sum_{n=0}^{\infty}\left(\cfrac{z-1}{2}\right)^{n}=-\sum_{n=0}^{\infty} \cfrac{(z-1)^{n}}{2^{n+1}} . z31=2112z11=21n=0(2z1)n=n=02n+1(z1)n.

1 ( z − 3 ) 2 = − ( 1 z − 3 ) ′ = ∑ n = 1 ∞ n ( z − 1 ) n − 1 2 n + 1 , \cfrac{1}{(z-3)^{2}}=-\left(\cfrac{1}{z-3}\right)^{\prime}=\sum_{n=1}^{\infty} \cfrac{n(z-1)^{n-1}}{2^{n+1}}, (z3)21=(z31)=n=12n+1n(z1)n1,

所以

f ( z ) = 1 ( z − 1 ) ( z − 3 ) 2 = 1 z − 1 ∑ n = 1 ∞ n ( z − 1 ) n − 1 2 n + 1 = ∑ n = 1 ∞ n ( z − 1 ) n − 2 2 n + 1 . \begin{aligned} f(z) & =\cfrac{1}{(z-1)(z-3)^{2}}=\cfrac{1}{z-1} \sum_{n=1}^{\infty} \cfrac{n(z-1)^{n-1}}{2^{n+1}} \\ & =\sum_{n=1}^{\infty} \cfrac{n(z-1)^{n-2}}{2^{n+1}} . \end{aligned} f(z)=(z1)(z3)21=z11n=12n+1n(z1)n1=n=12n+1n(z1)n2.

(2) 当 2 < ∣ z − 1 ∣ < + ∞ 2<|z-1|<+\infty 2<z1∣<+ 时, ∣ 2 z − 1 ∣ < 1 \left|\cfrac{2}{z-1}\right|<1 z12 <1, 所以

1 z − 3 = 1 z − 1 ⋅ 1 1 − 2 z − 1 = ∑ n = 0 ∞ 2 n ( z − 1 ) n + 1 . \cfrac{1}{z-3}=\cfrac{1}{z-1} \cdot \cfrac{1}{1-\cfrac{2}{z-1}}=\sum_{n=0}^{\infty} \cfrac{2^{n}}{(z-1)^{n+1}} . z31=z111z121=n=0(z1)n+12n.

1 ( z − 3 ) 2 = − ( 1 z − 3 ) ′ = ∑ n = 0 ∞ ( n + 1 ) 2 n ( z − 1 ) n + 2 , \cfrac{1}{(z-3)^{2}}=-\left(\cfrac{1}{z-3}\right)^{\prime}=\sum_{n=0}^{\infty} \cfrac{(n+1) 2^{n}}{(z-1)^{n+2}}, (z3)21=(z31)=n=0(z1)n+2(n+1)2n,

所以

f ( z ) = 1 ( z − 1 ) ( z − 3 ) 2 = 1 z − 1 ∑ n = 0 ∞ ( n + 1 ) 2 n ( z − 1 ) n + 2 = ∑ n = 0 ∞ ( n + 1 ) 2 n ( z − 1 ) n + 1 . \begin{aligned} f(z) & =\cfrac{1}{(z-1)(z-3)^{2}}=\cfrac{1}{z-1} \sum_{n=0}^{\infty} \cfrac{(n+1) 2^{n}}{(z-1)^{n+2}} \\ & =\sum_{n=0}^{\infty} \cfrac{(n+1) 2^{n}}{(z-1)^{n+1}} . \end{aligned} f(z)=(z1)(z3)21=z11n=0(z1)n+2(n+1)2n=n=0(z1)n+1(n+1)2n.

例 5.3
sin ⁡ z z \cfrac{\sin z}{z} zsinz z z z 平面上只有奇点 z = 0 z=0 z=0, 在其去心邻域 0 < ∣ z ∣ < + ∞ 0<|z|<+\infty 0<z<+ 内有洛朗展式

sin ⁡ z z = ∑ n = 0 ∞ ( − 1 ) n z 2 n ( 2 n + 1 ) ! = 1 − z 2 3 ! + ⋯   . \cfrac{\sin z}{z}=\sum_{n=0}^{\infty} \cfrac{(-1)^{n} z^{2 n}}{(2 n+1) !}=1-\cfrac{z^{2}}{3 !}+\cdots . zsinz=n=0(2n+1)!(1)nz2n=13!z2+.

例 5.4
e x + e 1 x \mathrm{e}^{x}+\mathrm{e}^{\cfrac{1}{x}} ex+ex1 z z z 平面上只有奇点 z = 0 z=0 z=0, 在其去心邻域 0 < ∣ z ∣ < + ∞ 0<|z|<+\infty 0<z<+ 内有洛朗展式

e z + e 1 x = 2 + ∑ n = 1 ∞ z n n ! + ∑ n = 1 ∞ 1 n ! ⋅ 1 z n . \mathrm{e}^{z}+\mathrm{e}^{\cfrac{1}{x}}=2+\sum_{n=1}^{\infty} \cfrac{z^{n}}{n !}+\sum_{n=1}^{\infty} \cfrac{1}{n !} \cdot \cfrac{1}{z^{n}} . ez+ex1=2+n=1n!zn+n=1n!1zn1.

由以上各例已可看出,在求一些初等函数的洛朗展式时,一般并不是按照公式 (5.5)去计算洛朗系数,主要是利用已知的幂级数展式去求所需要的洛朗展式.下面我们再举两例.

例 5.5
sin ⁡ z z − 1 \sin \cfrac{z}{z-1} sinz1z z z z 平面上只有奇点 z = 1 z=1 z=1, 且在去心邻域 0 < ∣ z − 1 ∣ < + ∞ 0<|z-1|<+\infty 0<z1∣<+ 内可展成洛朗级数.


sin ⁡ z z − 1 = sin ⁡ ( 1 + 1 z − 1 ) = sin ⁡ 1 cos ⁡ 1 z − 1 + cos ⁡ 1 sin ⁡ 1 z − 1 = sin ⁡ 1 [ 1 − 1 2 ! ( z − 1 ) 2 + ⋯ + ( − 1 ) n 1 ( 2 n ) ! ( z − 1 ) 2 n + ⋯   ] + cos ⁡ 1 [ 1 z − 1 − 1 3 ! ( z − 1 ) 3 + ⋯ + ( − 1 ) n 1 ( 2 n + 1 ) ! ( z − 1 ) 2 n + 1 + ⋯   ] = sin ⁡ 1 + cos ⁡ 1 z − 1 − sin ⁡ 1 2 ! ( z − 1 ) 2 − cos ⁡ 1 3 ! ( z − 1 ) 3 + ⋯ + ( − 1 ) n sin ⁡ 1 ( 2 n ) ! ( z − 1 ) 2 n + ( − 1 ) n cos ⁡ 1 ( 2 n + 1 ) ! ( z − 1 ) 2 n + 1 + ⋯   . \begin{aligned} & \sin \cfrac{z}{z-1}=\sin \left(1+\cfrac{1}{z-1}\right)=\sin 1 \cos \cfrac{1}{z-1}+\cos 1 \sin \cfrac{1}{z-1} \\ = & \sin 1\left[1-\cfrac{1}{2 !(z-1)^{2}}+\cdots+(-1)^{n} \cfrac{1}{(2 n) !(z-1)^{2 n}}+\cdots\right]+ \\ & \cos 1\left[\cfrac{1}{z-1}-\cfrac{1}{3 !(z-1)^{3}}+\cdots+(-1)^{n} \cfrac{1}{(2 n+1) !(z-1)^{2 n+1}}+\cdots\right] \\ = & \sin 1+\cfrac{\cos 1}{z-1}-\cfrac{\sin 1}{2 !(z-1)^{2}}-\cfrac{\cos 1}{3 !(z-1)^{3}}+\cdots+ \\ & (-1)^{n} \cfrac{\sin 1}{(2 n) !(z-1)^{2 n}}+(-1)^{n} \cfrac{\cos 1}{(2 n+1) !(z-1)^{2 n+1}}+\cdots . \end{aligned} ==sinz1z=sin(1+z11)=sin1cosz11+cos1sinz11sin1[12!(z1)21++(1)n(2n)!(z1)2n1+]+cos1[z113!(z1)31++(1)n(2n+1)!(z1)2n+11+]sin1+z1cos12!(z1)2sin13!(z1)3cos1++(1)n(2n)!(z1)2nsin1+(1)n(2n+1)!(z1)2n+1cos1+.

例 5.6
试证

cosh ⁡ ( z + 1 z ) = c 0 + ∑ n = 1 ∞ c n ( z n + z − n ) , \cosh \left(z+\cfrac{1}{z}\right)=c_{0}+\sum_{n=1}^{\infty} c_{n}\left(z^{n}+z^{-n}\right), cosh(z+z1)=c0+n=1cn(zn+zn),

其中

c n = 1 2 π ∫ 0 2 π cos ⁡ n φ cosh ⁡ ( 2 cos ⁡ φ ) d φ . c_{n}=\cfrac{1}{2 \pi} \int_{0}^{2 \pi} \cos n \varphi \cosh (2 \cos \varphi) \mathrm{d} \varphi . cn=2π102πcosnφcosh(2cosφ)dφ.


w = z + 1 z w=z+\cfrac{1}{z} w=z+z1 z z z 平面上只有 z = 0 z=0 z=0 一个奇点.而

cosh ⁡ w = 1 2 ( e w + e − w ) \cosh w=\cfrac{1}{2}\left(\mathrm{e}^{w}+\mathrm{e}^{-w}\right) coshw=21(ew+ew)

w w w 平面上解析, 故 cosh ⁡ ( z + 1 z ) \cosh \left(z+\cfrac{1}{z}\right) cosh(z+z1) z z z平面上也只有一个奇点 z = 0 z=0 z=0. 即它在去心邻域 0 < ∣ z ∣ < + ∞ 0<|z|<+\infty 0<z<+ 内解析.
由洛朗定理得

cosh ⁡ ( z + 1 z ) = ∑ n = − ∞ ∞ c n z n , c n = 1 2 π i ∫ Γ p cosh ⁡ ( z + z − 1 ) z n + 1   d z , \begin{array}{c} \cosh \left(z+\cfrac{1}{z}\right)=\sum_{n=-\infty}^{\infty} c_{n} z^{n}, \\ c_{n}=\cfrac{1}{2 \pi \mathrm{i}} \int_{\Gamma_{p}} \cfrac{\cosh \left(z+z^{-1}\right)}{z^{n+1}} \mathrm{~d} z, \end{array} cosh(z+z1)=n=cnzn,cn=2πi1Γpzn+1cosh(z+z1) dz,

Γ ρ \Gamma_{\rho} Γρ 表示任意圆周 ∣ z ∣ = ρ > 0 |z|=\rho>0 z=ρ>0.取 ρ = 1 \rho=1 ρ=1, 则沿圆周 Γ ρ : z = e i f , 0 ⩽ φ ⩽ 2 π \Gamma_{\rho}: z=\mathrm{e}^{\mathrm{if}}, 0 \leqslant \varphi \leqslant 2 \pi Γρ:z=eif,0φ2π,有

c n = 1 2 π ∫ 0 2 π cosh ⁡ ( e i φ + e − i φ ) e − n i φ d φ = 1 2 π ∫ 0 2 π cosh ⁡ ( 2 cos ⁡ φ ) cos ⁡ n φ d φ − i 2 π ∫ 0 2 π cosh ⁡ ( 2 cos ⁡ φ ) sin ⁡ n φ d φ . \begin{aligned} c_{n} & =\cfrac{1}{2 \pi} \int_{0}^{2 \pi} \cosh \left(\mathrm{e}^{\mathrm{i} \varphi}+\mathrm{e}^{-\mathrm{i} \varphi}\right) \mathrm{e}^{-n i \varphi} \mathrm{d} \varphi \\ & =\cfrac{1}{2 \pi} \int_{0}^{2 \pi} \cosh (2 \cos \varphi) \cos n \varphi \mathrm{d} \varphi-\cfrac{\mathrm{i}}{2 \pi} \int_{0}^{2 \pi} \cosh (2 \cos \varphi) \sin n \varphi \mathrm{d} \varphi . \end{aligned} cn=2π102πcosh(eiφ+eiφ)eniφdφ=2π102πcosh(2cosφ)cosnφdφ2πi02πcosh(2cosφ)sinnφdφ.

φ = 2 π − θ \varphi=2 \pi-\theta φ=2πθ, 则可知等号右边第二个积分为零. 故

c n = 1 2 π ∫ 0 2 π cosh ⁡ ( 2 cos ⁡ φ ) cos ⁡ n φ d φ . c n = c − n ( n = 1 , 2 , ⋯   ) . \begin{array}{c} c_{n}=\cfrac{1}{2 \pi} \int_{0}^{2 \pi} \cosh (2 \cos \varphi) \cos n \varphi \mathrm{d} \varphi . \\ c_{n}=c_{-n} \quad(n=1,2, \cdots) . \end{array} cn=2π102πcosh(2cosφ)cosnφdφ.cn=cn(n=1,2,).

所以

cosh ⁡ ( z + 1 z ) = c 0 + ∑ n = 1 ∞ c n ( z n + z − n ) .  \cosh \left(z+\cfrac{1}{z}\right)=c_{0}+\sum_{n=1}^{\infty} c_{n}\left(z^{n}+z^{-n}\right) \text {. } cosh(z+z1)=c0+n=1cn(zn+zn)

带开环升压转换器和逆变器的太阳能光伏系统 太阳能光伏系统驱动开环升压转换器和SPWM逆变器提供波形稳定、设计简单的交流电的模型 Simulink模型示了一个完整的基于太阳能光伏的直流到交流电力转换系统,该系统由简单、透明、易于理解的模块构建而。该系统从配置为提供真实直流输出电压的光伏阵列开始,然后由开环DC-DC升压转换器进行处理。升压转换器将光伏电压提高到适合为单相全桥逆变器供电的稳定直流链路电平。 逆变器使用正弦PWM(SPWM)开关来产生干净的交流输出波形,使该模型为研究直流-交流转换基本操作的理想选择。该设计避免了闭环和MPPT的复杂性,使用户能够专注于光伏接口、升压转换和逆变器开关的核概念。 此模型包含的主要功能: •太阳能光伏阵列在标准条件下产生~200V电压 •具有固定占空比操作的开环升压转换器 •直流链路电容器,用于平滑和稳定转换器输出 •单相全桥SPWM逆变器 •交流负载,用于观察实际输出行为 •显示光伏电压、升压输出、直流链路电压、逆变器交流波形和负载电流的组织良好的范围 •完全可编辑的结构,适合分析、实验和扩 该模型旨在为太阳能直流-交流转换提供一个干净高效的仿真框架。布局简单明了,允许用户快速了解信号流,检查各个阶段,并根据需要修改参数。 系统架构有意保持模块化,因此可以轻松扩,例如通过添加MPPT、动态负载行为、闭环升压控制或并网逆变器概念。该模型为进一步开发或整合到更大的可再生能源模拟中奠定了坚实的基础。
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值