如果 a a a 为函数 f ( z ) f(z) f(z) 的一个孤立奇点, 则必存在正数 R R R, 使得 f ( z ) f(z) f(z)在点 a a a 的去心邻域 K \ { a } : 0 < ∣ z − a ∣ < R K \backslash\{a\}: 0<|z-a|<R K\{a}:0<∣z−a∣<R 内可展成洛朗级数.
常用展开方法:
(1) 直接展开法.
利用洛朗定理的公式计算系数 c n c_{n} cn :
c n = 1 2 π i ∫ Γ f ( ζ ) ( ζ − a ) n + 1 d ζ ( n = 0 , ± 1 , ± 2 , ⋯ ) c_{n}=\cfrac{1}{2 \pi \mathrm{i}} \int_{\Gamma} \cfrac{f(\zeta)}{(\zeta-a)^{n+1}} \mathrm{~d} \zeta \quad(n=0, \pm 1, \pm 2, \cdots) cn=2πi1∫Γ(ζ−a)n+1f(ζ) dζ(n=0,±1,±2,⋯)
然后写出洛朗展式 f ( z ) = ∑ n = − ∞ ∞ c n ( z − a ) n f(z)=\sum_{n=-\infty}^{\infty} c_{n}(z-a)^{n} f(z)=∑n=−∞∞cn(z−a)n. 缺点: 计算往往很麻烦.
(2) 间接展开法.
根据正、负幕项组成的级数的惟一性, 可用代数运算、变量代换,并利用已知的泰勒展式去求所需要的洛朗展式.优点: 简捷、快速.
例 5.2
求函数
f
(
z
)
=
1
(
z
−
1
)
(
z
−
3
)
2
f(z)=\cfrac{1}{(z-1)(z-3)^{2}}
f(z)=(z−1)(z−3)21 分别在(1)
0
<
∣
z
−
1
∣
<
2
0<|z-1|<2
0<∣z−1∣<2; (2)
2
<
∣
z
−
1
∣
<
2<|z-1|<
2<∣z−1∣<
+
∞
+\infty
+∞ 内的洛朗展式.
解
(1) 当
0
<
∣
z
−
1
∣
<
2
0<|z-1|<2
0<∣z−1∣<2 时,
∣
z
−
1
2
∣
<
1
\left|\cfrac{z-1}{2}\right|<1
2z−1
<1, 故
1 z − 3 = − 1 2 1 1 − z − 1 2 = − 1 2 ∑ n = 0 ∞ ( z − 1 2 ) n = − ∑ n = 0 ∞ ( z − 1 ) n 2 n + 1 . \cfrac{1}{z-3}=-\cfrac{1}{2} \cfrac{1}{1-\cfrac{z-1}{2}}=-\cfrac{1}{2} \sum_{n=0}^{\infty}\left(\cfrac{z-1}{2}\right)^{n}=-\sum_{n=0}^{\infty} \cfrac{(z-1)^{n}}{2^{n+1}} . z−31=−211−2z−11=−21n=0∑∞(2z−1)n=−n=0∑∞2n+1(z−1)n.
而
1 ( z − 3 ) 2 = − ( 1 z − 3 ) ′ = ∑ n = 1 ∞ n ( z − 1 ) n − 1 2 n + 1 , \cfrac{1}{(z-3)^{2}}=-\left(\cfrac{1}{z-3}\right)^{\prime}=\sum_{n=1}^{\infty} \cfrac{n(z-1)^{n-1}}{2^{n+1}}, (z−3)21=−(z−31)′=n=1∑∞2n+1n(z−1)n−1,
所以
f ( z ) = 1 ( z − 1 ) ( z − 3 ) 2 = 1 z − 1 ∑ n = 1 ∞ n ( z − 1 ) n − 1 2 n + 1 = ∑ n = 1 ∞ n ( z − 1 ) n − 2 2 n + 1 . \begin{aligned} f(z) & =\cfrac{1}{(z-1)(z-3)^{2}}=\cfrac{1}{z-1} \sum_{n=1}^{\infty} \cfrac{n(z-1)^{n-1}}{2^{n+1}} \\ & =\sum_{n=1}^{\infty} \cfrac{n(z-1)^{n-2}}{2^{n+1}} . \end{aligned} f(z)=(z−1)(z−3)21=z−11n=1∑∞2n+1n(z−1)n−1=n=1∑∞2n+1n(z−1)n−2.
(2) 当 2 < ∣ z − 1 ∣ < + ∞ 2<|z-1|<+\infty 2<∣z−1∣<+∞ 时, ∣ 2 z − 1 ∣ < 1 \left|\cfrac{2}{z-1}\right|<1 z−12 <1, 所以
1 z − 3 = 1 z − 1 ⋅ 1 1 − 2 z − 1 = ∑ n = 0 ∞ 2 n ( z − 1 ) n + 1 . \cfrac{1}{z-3}=\cfrac{1}{z-1} \cdot \cfrac{1}{1-\cfrac{2}{z-1}}=\sum_{n=0}^{\infty} \cfrac{2^{n}}{(z-1)^{n+1}} . z−31=z−11⋅1−z−121=n=0∑∞(z−1)n+12n.
而
1 ( z − 3 ) 2 = − ( 1 z − 3 ) ′ = ∑ n = 0 ∞ ( n + 1 ) 2 n ( z − 1 ) n + 2 , \cfrac{1}{(z-3)^{2}}=-\left(\cfrac{1}{z-3}\right)^{\prime}=\sum_{n=0}^{\infty} \cfrac{(n+1) 2^{n}}{(z-1)^{n+2}}, (z−3)21=−(z−31)′=n=0∑∞(z−1)n+2(n+1)2n,
所以
f ( z ) = 1 ( z − 1 ) ( z − 3 ) 2 = 1 z − 1 ∑ n = 0 ∞ ( n + 1 ) 2 n ( z − 1 ) n + 2 = ∑ n = 0 ∞ ( n + 1 ) 2 n ( z − 1 ) n + 1 . \begin{aligned} f(z) & =\cfrac{1}{(z-1)(z-3)^{2}}=\cfrac{1}{z-1} \sum_{n=0}^{\infty} \cfrac{(n+1) 2^{n}}{(z-1)^{n+2}} \\ & =\sum_{n=0}^{\infty} \cfrac{(n+1) 2^{n}}{(z-1)^{n+1}} . \end{aligned} f(z)=(z−1)(z−3)21=z−11n=0∑∞(z−1)n+2(n+1)2n=n=0∑∞(z−1)n+1(n+1)2n.
例 5.3
sin
z
z
\cfrac{\sin z}{z}
zsinz 在
z
z
z 平面上只有奇点
z
=
0
z=0
z=0, 在其去心邻域
0
<
∣
z
∣
<
+
∞
0<|z|<+\infty
0<∣z∣<+∞ 内有洛朗展式
sin z z = ∑ n = 0 ∞ ( − 1 ) n z 2 n ( 2 n + 1 ) ! = 1 − z 2 3 ! + ⋯ . \cfrac{\sin z}{z}=\sum_{n=0}^{\infty} \cfrac{(-1)^{n} z^{2 n}}{(2 n+1) !}=1-\cfrac{z^{2}}{3 !}+\cdots . zsinz=n=0∑∞(2n+1)!(−1)nz2n=1−3!z2+⋯.
例 5.4
e
x
+
e
1
x
\mathrm{e}^{x}+\mathrm{e}^{\cfrac{1}{x}}
ex+ex1 在
z
z
z 平面上只有奇点
z
=
0
z=0
z=0, 在其去心邻域
0
<
∣
z
∣
<
+
∞
0<|z|<+\infty
0<∣z∣<+∞ 内有洛朗展式
e z + e 1 x = 2 + ∑ n = 1 ∞ z n n ! + ∑ n = 1 ∞ 1 n ! ⋅ 1 z n . \mathrm{e}^{z}+\mathrm{e}^{\cfrac{1}{x}}=2+\sum_{n=1}^{\infty} \cfrac{z^{n}}{n !}+\sum_{n=1}^{\infty} \cfrac{1}{n !} \cdot \cfrac{1}{z^{n}} . ez+ex1=2+n=1∑∞n!zn+n=1∑∞n!1⋅zn1.
由以上各例已可看出,在求一些初等函数的洛朗展式时,一般并不是按照公式 (5.5)去计算洛朗系数,主要是利用已知的幂级数展式去求所需要的洛朗展式.下面我们再举两例.
例 5.5
sin
z
z
−
1
\sin \cfrac{z}{z-1}
sinz−1z 在
z
z
z 平面上只有奇点
z
=
1
z=1
z=1, 且在去心邻域
0
<
∣
z
−
1
∣
<
+
∞
0<|z-1|<+\infty
0<∣z−1∣<+∞ 内可展成洛朗级数.
解
sin
z
z
−
1
=
sin
(
1
+
1
z
−
1
)
=
sin
1
cos
1
z
−
1
+
cos
1
sin
1
z
−
1
=
sin
1
[
1
−
1
2
!
(
z
−
1
)
2
+
⋯
+
(
−
1
)
n
1
(
2
n
)
!
(
z
−
1
)
2
n
+
⋯
]
+
cos
1
[
1
z
−
1
−
1
3
!
(
z
−
1
)
3
+
⋯
+
(
−
1
)
n
1
(
2
n
+
1
)
!
(
z
−
1
)
2
n
+
1
+
⋯
]
=
sin
1
+
cos
1
z
−
1
−
sin
1
2
!
(
z
−
1
)
2
−
cos
1
3
!
(
z
−
1
)
3
+
⋯
+
(
−
1
)
n
sin
1
(
2
n
)
!
(
z
−
1
)
2
n
+
(
−
1
)
n
cos
1
(
2
n
+
1
)
!
(
z
−
1
)
2
n
+
1
+
⋯
.
\begin{aligned} & \sin \cfrac{z}{z-1}=\sin \left(1+\cfrac{1}{z-1}\right)=\sin 1 \cos \cfrac{1}{z-1}+\cos 1 \sin \cfrac{1}{z-1} \\ = & \sin 1\left[1-\cfrac{1}{2 !(z-1)^{2}}+\cdots+(-1)^{n} \cfrac{1}{(2 n) !(z-1)^{2 n}}+\cdots\right]+ \\ & \cos 1\left[\cfrac{1}{z-1}-\cfrac{1}{3 !(z-1)^{3}}+\cdots+(-1)^{n} \cfrac{1}{(2 n+1) !(z-1)^{2 n+1}}+\cdots\right] \\ = & \sin 1+\cfrac{\cos 1}{z-1}-\cfrac{\sin 1}{2 !(z-1)^{2}}-\cfrac{\cos 1}{3 !(z-1)^{3}}+\cdots+ \\ & (-1)^{n} \cfrac{\sin 1}{(2 n) !(z-1)^{2 n}}+(-1)^{n} \cfrac{\cos 1}{(2 n+1) !(z-1)^{2 n+1}}+\cdots . \end{aligned}
==sinz−1z=sin(1+z−11)=sin1cosz−11+cos1sinz−11sin1[1−2!(z−1)21+⋯+(−1)n(2n)!(z−1)2n1+⋯]+cos1[z−11−3!(z−1)31+⋯+(−1)n(2n+1)!(z−1)2n+11+⋯]sin1+z−1cos1−2!(z−1)2sin1−3!(z−1)3cos1+⋯+(−1)n(2n)!(z−1)2nsin1+(−1)n(2n+1)!(z−1)2n+1cos1+⋯.
例 5.6
试证
cosh ( z + 1 z ) = c 0 + ∑ n = 1 ∞ c n ( z n + z − n ) , \cosh \left(z+\cfrac{1}{z}\right)=c_{0}+\sum_{n=1}^{\infty} c_{n}\left(z^{n}+z^{-n}\right), cosh(z+z1)=c0+n=1∑∞cn(zn+z−n),
其中
c n = 1 2 π ∫ 0 2 π cos n φ cosh ( 2 cos φ ) d φ . c_{n}=\cfrac{1}{2 \pi} \int_{0}^{2 \pi} \cos n \varphi \cosh (2 \cos \varphi) \mathrm{d} \varphi . cn=2π1∫02πcosnφcosh(2cosφ)dφ.
证
因
w
=
z
+
1
z
w=z+\cfrac{1}{z}
w=z+z1 在
z
z
z 平面上只有
z
=
0
z=0
z=0 一个奇点.而
cosh w = 1 2 ( e w + e − w ) \cosh w=\cfrac{1}{2}\left(\mathrm{e}^{w}+\mathrm{e}^{-w}\right) coshw=21(ew+e−w)
在
w
w
w 平面上解析, 故
cosh
(
z
+
1
z
)
\cosh \left(z+\cfrac{1}{z}\right)
cosh(z+z1) 在
z
z
z平面上也只有一个奇点
z
=
0
z=0
z=0. 即它在去心邻域
0
<
∣
z
∣
<
+
∞
0<|z|<+\infty
0<∣z∣<+∞ 内解析.
由洛朗定理得
cosh ( z + 1 z ) = ∑ n = − ∞ ∞ c n z n , c n = 1 2 π i ∫ Γ p cosh ( z + z − 1 ) z n + 1 d z , \begin{array}{c} \cosh \left(z+\cfrac{1}{z}\right)=\sum_{n=-\infty}^{\infty} c_{n} z^{n}, \\ c_{n}=\cfrac{1}{2 \pi \mathrm{i}} \int_{\Gamma_{p}} \cfrac{\cosh \left(z+z^{-1}\right)}{z^{n+1}} \mathrm{~d} z, \end{array} cosh(z+z1)=∑n=−∞∞cnzn,cn=2πi1∫Γpzn+1cosh(z+z−1) dz,
Γ ρ \Gamma_{\rho} Γρ 表示任意圆周 ∣ z ∣ = ρ > 0 |z|=\rho>0 ∣z∣=ρ>0.取 ρ = 1 \rho=1 ρ=1, 则沿圆周 Γ ρ : z = e i f , 0 ⩽ φ ⩽ 2 π \Gamma_{\rho}: z=\mathrm{e}^{\mathrm{if}}, 0 \leqslant \varphi \leqslant 2 \pi Γρ:z=eif,0⩽φ⩽2π,有
c n = 1 2 π ∫ 0 2 π cosh ( e i φ + e − i φ ) e − n i φ d φ = 1 2 π ∫ 0 2 π cosh ( 2 cos φ ) cos n φ d φ − i 2 π ∫ 0 2 π cosh ( 2 cos φ ) sin n φ d φ . \begin{aligned} c_{n} & =\cfrac{1}{2 \pi} \int_{0}^{2 \pi} \cosh \left(\mathrm{e}^{\mathrm{i} \varphi}+\mathrm{e}^{-\mathrm{i} \varphi}\right) \mathrm{e}^{-n i \varphi} \mathrm{d} \varphi \\ & =\cfrac{1}{2 \pi} \int_{0}^{2 \pi} \cosh (2 \cos \varphi) \cos n \varphi \mathrm{d} \varphi-\cfrac{\mathrm{i}}{2 \pi} \int_{0}^{2 \pi} \cosh (2 \cos \varphi) \sin n \varphi \mathrm{d} \varphi . \end{aligned} cn=2π1∫02πcosh(eiφ+e−iφ)e−niφdφ=2π1∫02πcosh(2cosφ)cosnφdφ−2πi∫02πcosh(2cosφ)sinnφdφ.
命 φ = 2 π − θ \varphi=2 \pi-\theta φ=2π−θ, 则可知等号右边第二个积分为零. 故
c n = 1 2 π ∫ 0 2 π cosh ( 2 cos φ ) cos n φ d φ . c n = c − n ( n = 1 , 2 , ⋯ ) . \begin{array}{c} c_{n}=\cfrac{1}{2 \pi} \int_{0}^{2 \pi} \cosh (2 \cos \varphi) \cos n \varphi \mathrm{d} \varphi . \\ c_{n}=c_{-n} \quad(n=1,2, \cdots) . \end{array} cn=2π1∫02πcosh(2cosφ)cosnφdφ.cn=c−n(n=1,2,⋯).
所以
cosh ( z + 1 z ) = c 0 + ∑ n = 1 ∞ c n ( z n + z − n ) . \cosh \left(z+\cfrac{1}{z}\right)=c_{0}+\sum_{n=1}^{\infty} c_{n}\left(z^{n}+z^{-n}\right) \text {. } cosh(z+z1)=c0+n=1∑∞cn(zn+z−n).
本文介绍了复变函数在孤立奇点邻域内的洛朗级数展开方法,包括直接展开法和间接展开法,并通过多个例子详细解释了如何求解洛朗级数,如zsinz、ex+ex1等函数的洛朗展式。
8132

被折叠的 条评论
为什么被折叠?



