复变函数论5-1-解析函数的洛朗展式-3:洛朗级数与泰勒级数的关系【泰勒级数是洛朗级数的特殊情形】【设f(z)在点a处解析,则圆心在a半径等于由a到f(z)的最近奇点的距离的圆可以看成圆环的特殊情形】

洛朗定理指出,在圆环内解析的函数可以展开为洛朗级数,泰勒级数是其特殊情形。当函数在点a处解析时,洛朗级数所有负指数系数为0,转化为泰勒级数。举例说明了在不同圆环域内,函数的洛朗级数和泰勒级数表达形式。
摘要由CSDN通过智能技术生成

定理 5.2 (洛朗定理)

在圆环 H : r < ∣ z − a ∣ < R ( r ⩾ 0 , R ⩽ + ∞ ) H: r<|z-a|<R(r \geqslant 0, R \leqslant+\infty) H:r<za<R(r0,R+) 内解析的函数 f ( z ) f(z) f(z)必可展成双边幂级数

f ( z ) = ∑ n = − ∞ ∞ c n ( z − a ) n , ( 5.4 ) f(z)=\sum_{n=-\infty}^{\infty} c_{n}(z-a)^{n}, \quad\quad(5.4) f(z)=n=cn(za)n,(5.4)

其中

c n = 1 2 π i ∫ Γ f ( ζ ) ( ζ − a ) n + 1   d ζ ( n = 0 , ± 1 , ± 2 , ⋯   ) , ( 5.5 ) \color{red}{c_{n}=\cfrac{1}{2 \pi \mathrm{i}} \int_{\Gamma} \cfrac{f(\zeta)}{(\zeta-a)^{n+1}} \mathrm{~d} \zeta \quad(n=0, \pm 1, \pm 2, \cdots)}, \quad\quad(5.5) cn=2πi1Γ(ζa)n+1f(ζ) dζ(n=0,±1,±2,),(5.5)

Γ \Gamma Γ 为圆周 ∣ ζ − a ∣ = ρ ( r < ρ < R ) |\zeta-a|=\rho(r<\rho<R) ζa=ρ(r<ρ<R), 并且展式是惟一的 (即 f ( z ) f(z) f(z)及圆环 H H H 惟一地决定了系数 c n c_{n} cn ).


当已给函数 f ( z ) f(z) f(z) 在点 a a a 处解析时, 圆心在 a a a, 半径等于由 a a a 到函数 f ( z ) f(z) f(z)的最近奇点的距离的那个圆可以看成圆环的特殊情形,在其中就可作出洛朗级数展开式. 根据柯西积分定理,由公式 (5.5) 可以看出, 这个展式的所有系数 c − n ( n = 1 , 2 , ⋯   ) \color{red}{c_{-n}(n=1,2, \cdots)} cn

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值