泛函分析基础11-线性算子的谱3:紧集和全连续算子

为了把谱论应用于积分方程,我们要介绍一种全连续算子它的定义,又涉及紧集的概念.

在第二章第3节中我们给出了度量空间中紧集的定义.为了便于判断集合的紧性,我们给出下面的定理.

定理1

X X X 是 度量空间, M M M X X X 中 一子集,则 M M M X X X中的紧集的充要条件为对 M M M 中任何点列 { x n } \left\{ x _ { n } \right\} { xn} 都存在子列 { x n k } \left\{ x _ { n _ { k } } \right\} { xnk} 收敛于 M M M 中一元素 x 0 . x _ { 0 } . x0.

证明
必要性
M M M X X X 中的紧集, { x n } \left\{ x _ { n } \right\} { xn} M M M中 任一点列.如果 { x n } \left\{ x _ { n } \right\} { xn} 中不存在子列收敛于 M M M 中一元素,则对每个 x ∈ M , x \in M , xM, 存在 δ x > 0 \delta _ { x } > 0 δx>0以及正整数 n x , n _ { x } , nx, 使得当 n ⩾ n x n \geqslant n _ { x } nnx 时有 x n ∉ U ( x , δ x ) . x _ { n } \notin U \left( x , \delta _ { x } \right) . xn/U(x,δx). 显然开集族 ∣ U ( x , δ x ) : x ∈ M ∣ \left| U \left( x , \delta _ { x } \right) : x \in M \right| U(x,δx):xM 覆盖了 M , M , M, 于是由 M M M 的紧性,存在 x 1 , x _ { 1 } , x1, x 2 , ⋯   , x k , x _ { 2 } , \cdots , x _ { k } , x2,,xk, 使得

M ⊂ ⋃ j = 1 k U ( x j , δ x j ) . M \subset \bigcup _ { j = 1 } ^ { k } U \left( x _ { j } , \delta _ { x _ { j } } \right) . Mj=1kU(xj,δxj).

另一方面,当 n ⩾ max ⁡ ∣ n x 1 , n x 2 , ⋯   , n x k ∣ n \geqslant \max \left| n _ { x _ { 1 } } , n _ { x _ { 2 } } , \cdots , n _ { x _ { k } } \right| nmaxnx1,nx2,,nxk时,

x n ∉ U ( x j , δ x j ) ( j = 1 , 2 , ⋯   , k ) , x _ { n } \notin U \left( x _ { j } , \delta _ { x _ { j } } \right) \quad ( j = 1 , 2 , \cdots , k ) , xn/U(xj,δxj)(j=1,2,,k),

因此 x n ∉ M , x _ { n } \notin M , xn/M, 这与 { x n } ⊂ M \left\{ x _ { n } \right\} \subset M { xn}M矛盾.

充分性
M \mathscr { M } M M M M 的一个开覆盖.我们分两步来证明.不妨假定 M \mathscr { M } M 中的开集都是开邻域

(1) 先证明存在正数 δ , \delta , δ, 使任一以属于 M M M 的以 x x x 为中心的 δ \delta δ邻域,都将包含在某一个属于 M \mathscr { M } M 的开集内.设不然,即没有这样的正数 δ , \delta , δ,则对于任意正整数 n , 1 n n , \frac { 1 } { n } n,n1 都不能取作 δ , \delta , δ, 因而必有 x n ∈ M , x _ { n } \in M , xnM, 使 U ( x n , 1 n ) U \left( x _ { n } , \frac { 1 } { n } \right) U(xn,n1) 不包含在任何属于 M \mathscr { M } M 的开邻域中。

在这里插入图片描述
由充分性条件,存在 { x n } \left\{ x _ { n } \right\} { xn} 的一个子序列 { x n 1 } , \left\{ x _ { n _ { 1 } } \right\} , { xn1}, 使得 lim ⁡ i → ∞ x n i = x 0 , \lim _ { i \rightarrow \infty } x _ { n _ { i } } = x _ { 0 } , limixni=x0, 并且 x 0 ∈ M . x _ { 0 } \in M . x0M. B \mathscr { B } B覆盖 M , M , M, 因此有 U ∈ L , U \in \mathscr { L } , UL, 使得 x 0 ∈ U . x _ { 0 } \in U . x0U.不妨设 U = U ( y 0 , η ) U = U \left( y _ { 0 } , \eta \right) U=U(y0,η) (图11.1),则有 η ′ > 0 , \eta ^ { \prime } > 0 , η>0, 使得 U ( x 0 , η ′ ) ⊂ U . U \left( x _ { 0 } , \eta ^ { \prime } \right) \subset U . U(x0,η)U. 注意 x n i → x 0 , x _ { n _ { i } } \rightarrow x _ { 0 } , xnix0, 所以可以取 n i n _ { i } ni充分大,使 d ( x n i , x 0 ) < η ′ 2 , 1 n i < η ′ 2 , d \left( x _ { n _ { i } } , x _ { 0 } \right) < \frac { \eta ^ { \prime } } { 2 } , \frac { 1 } { n _ { i } } < \frac { \eta ^ { \prime } } { 2 } , d(xni,x0)<2η,ni1<2η,于是 U ( x n i , 1 n i ) ⊂ U \left( x _ { n _ { i } } , \frac { 1 } { n _ { i } } \right) \subset U(xni,

  • 2
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值