泛函分析基础8-有界线性算子和连续线性泛函1-2:线性算子、线性泛函【设X和Y是同为实/复的线性空间,若∀u,v∈X及数α,满足T(u+v)=Tu+Tv且T(αu)=αTu,称T为线性算子➠线性泛函】

在这一章中,我们将研究 从赋范线性空间 X X X 到 另一个赋范线性空间 Y Y Y中的映射,亦称算子

如果 Y Y Y是数域,则称这种算子为泛函

算子和泛函我们并不陌生.前已提到微分算子 D = d   d x D = \frac { \mathrm { d } } { \mathrm { ~ d } x } D= dxd就是从连续可微函数空间 C 1 [ a , b ] C ^ { 1 } [ a , b ] C1[a,b] C [ a , b ] C [ a , b ] C[a,b]上的算子,而黎曼积分 ∫ a b f ( t ) d t \int _ { a } ^ { b } f ( t ) \mathrm { d } t abf(t)dt 就是连续函数空间 C [ a , b ] C [ a , b ] C[a,b] 上的泛函.

如果说函数是数和数之间的对应,那么算子可以说是函数和函数之间的对应,不过这是更高一级的对应.

我们这里主要讨论线性算子和线性泛函,关于非线性算子和非线性泛函的问题已超出本书的范围了

本章将证明,线性算子的有界性与连续性是等同的.

这看上去有些奇怪,实际上由于泛函和算子是"线性"的,才有此结果.

读者应细细体会.其他的内容包括引入刻画线性算子的重要参数----算子范数,介绍算子空间的完备性、连续线性泛函空间,即共轭空间的一些例子,

第3节引入有限秩算子的概念,为以后研究全连续算子的谱奠定基础.


在这里插入图片描述

定义1

X X X Y Y Y 是 两个同为实(或复)的线性空间, D \mathscr { D } D X X X 的 线性子空间, T T T D \mathscr { D } D Y Y Y 中的映射,如果对任何 x , y ∈ D x , y \in \mathscr { D } x,yD及 数 α , \alpha , α,

T ( x + y ) = T x + T y , ( 1 ) T ( α x ) = α T x , ( 2 ) T ( x + y ) = T x + T y , \quad\quad(1) \\ T ( \alpha x ) = \alpha T x , \quad\quad(2) T(x+y)=Tx+Ty,(1)T(αx)=αTx,(2)

则称 T T T D \mathscr { D } D Y Y Y 中 的线性算子,其中 D \mathscr { D } D称 为 T T T 的定义域,记为 D ( T ) , T L \mathscr { D } ( T ) , T \mathscr { L } D(T),TL 称为 T T T 的值域,记为 R ( T ) , \mathscr { R } ( T ) , R(T), T T T 取值于实(或复)数域时,就称 T T T 为实(或复)线性泛函.

如果 T T T 为线性算子,在(2)中取 α = 0 , \alpha = 0 , α=0, 立即可得 T 0 = 0 , T 0 = 0 , T0=0, 0 ∈ N ( T ) , 0 \in \mathscr { N } ( T ) , 0N(T), 其中 N ( T ) \mathcal { N } ( T ) N(T) 表示算子 T T T 的零空间

N ( T ) = { x : T x = 0 , x ∈ D ( T ) } . \mathscr { N } ( T ) = \{ x : T x = 0 , x \in \mathscr { D } ( T ) \} . N(T)={ x:Tx=0,xD(T)}.

下面举一些线性算子和线性泛函的例子

例1
X X X 是 线性空间, α \alpha α 是一给定的数,对任意 x ∈ X , x \in X , x

  • 7
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值