根据解析函数的孤立奇点特征,便可以区分出两种最简单的解析函数族.
- 整函数
- 亚纯函数
定义 5.6
在 z z z平面上除极点外无其他类型奇点的单值解析函数称为亚纯函数.亚纯函数族是较整函数族更一般的函数族.
定义 5.7
非有理函数的亚纯函数称为超越亚纯函数.
例 5.20
1 e z − 1 \cfrac{1}{\mathrm{e}^{z}-1} ez−11 是一个超越亚纯函数,因为它有无穷多个极点:
z = 2 k π i ( k = 0 , ± 1 , ± 2 , ⋯ ) , z=2 k \pi i \quad(k=0, \pm 1, \pm 2, \cdots), z=2kπi(k=0,±1,±2,⋯),
其聚点 z = ∞ z=\infty z=∞ 是一个非孤立奇点. 故此函数不可能是一有理函数.
整函数也看成是亚纯函数的一种特例.
注 可去奇点既然可以除去后成为解析点, 在定义及定理的条件中,一般就都不提到它.
例 5.21
试证 f ( z ) f(z) f(z) 是单叶整函数的充要条件为
f ( z ) = a z + b ( a ≠ 0 ) . f(z)=a z+b \quad(a \neq 0) . f(z)=az+b(a=0).
证 充分性 由于函数
w = f ( z ) = a z + b ( a ≠ 0 ) w=f(z)=a z+b \quad(a \neq 0) w=