复变函数论5-4-整函数与亚纯函数的概念2-亚纯函数3:超越亚纯函数【非有理函数的亚纯函数称为超越亚纯函数】

本文介绍了复变函数论中的亚纯函数概念,特别是超越亚纯函数,即非有理函数的亚纯函数。通过定义5.6和5.7阐述了亚纯函数的特性,并通过例子5.20和5.21讨论了如何判断一个函数是否为单叶整函数。内容包括整函数作为亚纯函数的特殊情况,以及单叶整函数的充分必要条件。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

根据解析函数的孤立奇点特征,便可以区分出两种最简单的解析函数族.

  • 整函数
  • 亚纯函数

定义 5.6

z z z平面上除极点外无其他类型奇点的单值解析函数称为亚纯函数.亚纯函数族是较整函数族更一般的函数族.


定义 5.7

非有理函数的亚纯函数称为超越亚纯函数.

例 5.20
1 e z − 1 \cfrac{1}{\mathrm{e}^{z}-1} ez11 是一个超越亚纯函数,因为它有无穷多个极点:

z = 2 k π i ( k = 0 , ± 1 , ± 2 , ⋯   ) , z=2 k \pi i \quad(k=0, \pm 1, \pm 2, \cdots), z=2kπi(k=0,±1,±2,),

其聚点 z = ∞ z=\infty z= 是一个非孤立奇点. 故此函数不可能是一有理函数.

整函数也看成是亚纯函数的一种特例.

注 可去奇点既然可以除去后成为解析点, 在定义及定理的条件中,一般就都不提到它.

例 5.21
试证 f ( z ) f(z) f(z) 是单叶整函数的充要条件为

f ( z ) = a z + b ( a ≠ 0 ) . f(z)=a z+b \quad(a \neq 0) . f(z)=az+b(a=0).

证 充分性 由于函数

w = f ( z ) = a z + b ( a ≠ 0 ) w=f(z)=a z+b \quad(a \neq 0) w=

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值