复变函数论6-留数理论及其应用1-0:留数的定义2【函数在有限可去奇点处的留数为零】【若解析域为0<|z-a|<R,则当0<ρ<R时,留数值与ρ无关,Resf(z)=c₋₁=1/2πi∫f(z)dz】

该文介绍了复变函数论中的留数理论,包括留数的定义、洛朗定理的应用。在解析函数在有限可去奇点处的留数被定义为0,并通过柯西积分定理和洛朗系数公式阐述了留数与积分的关系,指出留数值与路径无关,且等于洛朗展开中的-1次项系数。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

定义 3.3

考虑 n + 1 n+1 n+1 条周线 C 0 , C 1 , C 2 , ⋯   , C n C_{0}, C_{1}, C_{2}, \cdots, C_{n} C0,C1,C2,,Cn, 其中 C 1 , C 2 , ⋯   , C n C_{1}, C_{2}, \cdots, C_{n} C1,C2,,Cn 中每一条都在其余各条的外部, 而它们又全都在 C 0 C_{0} C0 的内部. 在 C 0 C_{0} C0 的内部同时又在 C 1 , C 2 , ⋯   , C n C_{1}, C_{2}, \cdots, C_{n} C1,C2,,Cn外部的点集构成一个有界的 n + 1 n+1 n+1 连通区域 D D D, 以 C 0 , C 1 , C 2 , ⋯   , C n C_{0}, C_{1}, C_{2}, \cdots, C_{n} C0,C1,C2,,Cn 为它的边界. 在这种情况下,我们称区域 D D D 的边界是一条复周线:

C = C 0 + C 1 − + C 2 − + ⋯ + C n − , C=C_{0}+C_{1}^{-}+C_{2}^{-}+\cdots+C_{n}^{-}, C=C0

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值