定义 3.3
考虑 n + 1 n+1 n+1 条周线 C 0 , C 1 , C 2 , ⋯ , C n C_{0}, C_{1}, C_{2}, \cdots, C_{n} C0,C1,C2,⋯,Cn, 其中 C 1 , C 2 , ⋯ , C n C_{1}, C_{2}, \cdots, C_{n} C1,C2,⋯,Cn 中每一条都在其余各条的外部, 而它们又全都在 C 0 C_{0} C0 的内部. 在 C 0 C_{0} C0 的内部同时又在 C 1 , C 2 , ⋯ , C n C_{1}, C_{2}, \cdots, C_{n} C1,C2,⋯,Cn外部的点集构成一个有界的 n + 1 n+1 n+1 连通区域 D D D, 以 C 0 , C 1 , C 2 , ⋯ , C n C_{0}, C_{1}, C_{2}, \cdots, C_{n} C0,C1,C2,⋯,Cn 为它的边界. 在这种情况下,我们称区域 D D D 的边界是一条复周线:
C = C 0 + C 1 − + C 2 − + ⋯ + C n − , C=C_{0}+C_{1}^{-}+C_{2}^{-}+\cdots+C_{n}^{-}, C=C0