实变函数论6-微分与不定积分5:斯蒂尔切斯积分

5斯蒂尔切斯积分
现在我们着手推广 L L L 积分,得到所谓 L − S L - S LS
勒贝格一斯蒂尔切斯)积分,并为此在本
节先介绍一下作为 L − S L - S LS 积分前身的黎曼-斯蒂尔切斯积分(简称 R − S R - S RS
积分或 S S S 积分),
当然 R − S R - S RS 积分是 R R R 积 分的另一种推广
考虑有质量分布的线段 [ a , b ] , [ a , b ] , [a,b], 设分布在线段 [ a , x ] [ a , x ] [a,x] 上的总质量
m ( x ) m ( x ) m(x) 是已知的递
增函数,从而分布在线段 [ x , x ′ ] \left[ x , x ^ { \prime } \right] [x,x] 上的质量为
m ( x ′ ) − m ( x ) , m \left( x ^ { \prime } \right) - m ( x ) , m(x)m(x), 则该线段 [ a , b ] [ a , b ] [a,b]
关于原点 O O O
的力矩和转动惯量分别定义为
M = lim ⁡ δ ( T ) → 0 ∑ i = 1 n x i ( m ( x i ) − m ( x i − 1 ) ) , 记为 ∫ a b x   d m ( x ) , M = \lim _ { \delta ( T ) \rightarrow 0 } \sum _ { i = 1 } ^ { n } x _ { i } \left( m \left( x _ { i } \right) - m \left( x _ { i - 1 } \right) \right) , \quad 记 为 \int _ { a } ^ { b } x \mathrm { ~ d } m ( x ) , M=limδ(T)0i=1nxi(m(xi)m(xi1)),记为abx dm(x),
J = lim ⁡ s ( T ) → 0 ∑ i = 1 n x i 2 ( m ( x i ) − m ( x i − 1 ) ) , 记为 ∫ a b x 2   d m ( x ) . J = \lim _ { s ( T ) \rightarrow 0 } \sum _ { i = 1 } ^ { n } x _ { i } ^ { 2 } \left( m \left( x _ { i } \right) - m \left( x _ { i - 1 } \right) \right) , \quad 记 为 \int _ { a } ^ { b } x ^ { 2 } \mathrm { ~ d } m ( x ) . J=lims(T)0i=1nxi2(m(xi)m(xi1)),记为abx2 dm(x).
这里分划
T : a = x 0 < x 1 < ⋯ < x n = b , δ ( T ) = max ⁡ k { x i − x i − 1 } . T : a = x _ { 0 } < x _ { 1 } < \cdots < x _ { n } = b , \delta ( T ) = \max _ { k } \left\{ x _ { i } - x _ { i - 1 } \right\} . T:a=x0<x1<<xn=b,δ(T)=maxk{ xixi1}.
由于物理上诸如此类问题的需要,值得将此概念一般化,便得到如下定义、
定义( S S S 积分)设 f ( x ) , α ( x ) f ( x ) , \alpha ( x ) f(x),α(x) [ a , b ] [ a , b ] [a,b]
上的有限函数,对 [ a , b ] [ a , b ] [a,b] 作一分划
T : a = x 0 < x 1 < ⋯ < x n = b T : a = x _ { 0 } < x _ { 1 } < \cdots < x _ { n } = b T:a=x0<x1<<xn=b
及属于此分划的任一组"介点
x i − 1 ⩽ ξ i ⩽ x i ( i = 1 , 2 , ⋯   , n ) x _ { i - 1 } \leqslant \xi _ { i } \leqslant x _ { i } ( i = 1 , 2 , \cdots , n ) xi1ξixi(i=1,2,,n)
作和数(叫做斯蒂尔切斯和
数,简称 S S S 和数)
∑ i = 1 n f ( ξ i ) [ α ( x i ) − α ( x i − 1 ) ] . \sum _ { i = 1 } ^ { n } f \left( \xi _ { i } \right) \left[ \alpha \left( x _ { i } \right) - \alpha \left( x _ { i - 1 } \right) \right] . i=1nf(ξi)[α(xi)α(xi1)].
如果当 δ ( T ) → 0 \delta ( T ) \rightarrow 0 δ(T)0
时,此和数总趋于一确定的有限极限(不论 T T T 分法如何,也不论介点取
法如何),则称 f ( x ) f ( x ) f(x) [ a , b ] [ a , b ] [a,b] 上关于 α ( x ) \alpha ( x ) α(x) S S S
可积的,此极限叫做 f ( x ) f ( x ) f(x) [ a , b ] [ a , b ] [a,b] 上关
α ( x ) \alpha ( x ) α(x) S S S 积分,记为
∫ a b f ( x ) d α ( x ) . \int _ { a } ^ { b } f ( x ) \mathrm { d } \alpha ( x ) . abf(x)dα(x).
易知当 α ( x ) = x \alpha ( x ) = x α(x)=x 时, S S S 积分便成为 R R R 积分,可见 S S S 积分是
R R R 积 分的一种推广
又如当我们考虑曲线积分
∫ c f ( x , y ) d x , C : x = φ ( t ) , y = ψ ( t ) ( α ⩽ t ⩽ β ) , \int _ { c } f ( x , y ) \mathrm { d } x , C : x = \varphi ( t ) , y = \psi ( t ) ( \alpha \leqslant t \leqslant \beta ) , cf(x,y)dx,C:x=φ(t),y=ψ(t)(αtβ),
∫ C f ( x , y ) d x = ∫ a β f ( φ ( t ) , ψ ( t ) ) d φ ( t ) \int _ { C } f ( x , y ) \mathrm { d } x = \int _ { a } ^ { \beta } f ( \varphi ( t ) , \psi ( t ) ) \mathrm { d } \varphi ( t ) Cf(x,y)dx=aβf(φ(t),ψ(t))dφ(t)
就是一种特殊的 S S S 积分.
定理1
(1)
∫ a b [ f 1 ( x ) + f 2 ( x

  • 2
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值