泛函分析基础7-1-度量空间4-1:柯西点列【设{xₙ}是度量空间X中点列,如果∀ε>0,∃正整数N=N(ε),使当n,m>N时,必有d(xₙ,xₘ)<ε,则称{xₙ}是X中的柯西点列/基本点列】

本文介绍了度量空间中的柯西点列概念及其性质,并通过举例说明了完备度量空间的定义,指出R的子空间l∞和C[a, b]是完备的,而某些其他空间如P[a, b]和特定构造的X不是完备的。" 113679211,10544760,Python日志管理:logging重定向print到MongoDB,"['python输入重定向', '日志处理', '数据库集成']
摘要由CSDN通过智能技术生成

柯西(Cauchy)收敛准则

数列 { a n } \left\{a_{n} \}\right. { an}收敛的充要条件是: 对任给的 ε > 0 \varepsilon>0 ε>0, 存在正整数 N N N, 使得当 n , m > N n, m>N n,m>N 时, 有

∣ a n − a m ∣ < ε . \left|a_{n}-a_{m}\right|<\varepsilon . anam<

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值