泛函分析基础8-有界线性算子和连续线性泛函3:有限秩算子

在巴拿赫空间理论中,有限秩算子是与矩阵最接近的算子概念。本文介绍了有限秩算子的定义,通过举例说明其性质,并探讨了它们在商空间中的作用,证明了有限秩算子生成的子空间是闭的。
摘要由CSDN通过智能技术生成

在本节中,引进与矩阵最接近的算子,称为有限秩算子.

定义

X , Y X , Y X,Y 是巴拿赫空间, T ∈ B ( X , Y ) . T \in \mathscr { B } ( X , Y ) . TB(X,Y). 如果 R ( T ) \mathscr { R } ( T ) R(T) 是有限维的子空间,则称 T T T是有限秩算子

R ( X , Y ) \mathscr { R } ( X , Y ) R(X,Y) B ( X , Y ) \mathscr { B } ( X , Y ) B(X,Y)中有限秩算子全体并记 A ( X ) = A ( X , X ) . \mathscr { A } ( X ) = \mathscr { A } ( X , X ) . A(X)=A(X,X).

例1
X , Y X , Y X,Y 是巴拿赫空间.设 ∣ y 1 , y 2 , ⋯   , y n ∣ \left| y _ { 1 } , y _ { 2 } , \cdots , y _ { n } \right| y1,y2,,yn Y Y Y中的一组线性无关向量 f 1 , f _ { 1 } , f1, f 2 , ⋯   , f n ∈ X ′ . f _ { 2 } , \cdots , f _ { n } \in X ^ { \prime } . f2,,fnX. 定义

T x = ∑ k = 1 n y k f k ( x ) , 任意 x ∈ X . T x = \sum _ { k = 1 } ^ { n } y _ { k } f _ { k } ( x ) , \quad 任 意 x \in X . Tx=k=1nykfk(x),任意xX.

T T T 是线性算子, R ( T ) ⊂ span ⁡ { y 1 , y 2 , ⋯   , y n } \mathscr { R } ( T ) \subset \operatorname { s p a n } \left\{ y _ { 1 } , y _ { 2 } , \cdots , y _ { n } \right\} R(T)span{ y1,y2,,yn}

∥ T x ∥ ⩽ ∑ k = 1 n ∥ y k f k ( x ) ∥ ⩽ ∑ k = 1 n ∥ y k ∥ ∥ f k ∥ ∥ x ∥ , \| T x \| \leqslant \sum _ { k = 1 } ^ { n } \left\| y _ { k } f _ { k } ( x ) \right\| \leqslant \sum _ { k = 1 } ^ { n } \left\| y _ { k } \right\| \left\| f _ { k } \right\| \| x \| , Txk=1nykfk(x)k=1nykfkx,

∥ T ∥ ⩽ ∑ k = 1 n ∥ y k ∥ ∥ f k ∥ , \| T \| \leqslant \sum _ { k = 1 } ^ { n } \left\| y _ { k } \right\| \left\| f _ { k } \right\| , Tk=1nykfk, 从而 T ∈ T ( X , Y ) . T \in \mathscr { T } ( X , Y ) . TT(X,Y).

下面的定理表明: A ( X ) \mathscr { A } ( X ) A(X) B ( X ) \mathscr { B } ( X ) B(X)的一个理想

定理1

X X X 是巴拿赫空间, S , T ∈ A ( X ) , A ∈ B ( X ) . S , T \in \mathscr { A } ( X ) , A \in \mathscr { B } ( X ) . S,TA(X),AB(X). F ( X ) \mathscr { F } ( X ) F(X) B ( X ) \mathscr { B } ( X ) B(X) 的一个理想,即

S + T ∈ T ( X ) , A S , S A ∈ T ( X ) . S + T \in \mathscr { T } ( X ) , A S , S A \in \mathscr { T } ( X ) . S+TT(X),AS,SAT(X).

证明
B ( S + T ) ⊂ B ( S ) + B ( T ) \mathscr { B } ( S + T ) \subset \mathscr { B } ( S ) + \mathscr { B } ( T ) B(S+T)B(S)+B(T)知, S + T ∈ A ( X ) . S + T \in \mathscr { A } ( X ) . S+TA(X).

R ( S A ) ⊂ R ( S ) \mathscr { R } ( S A ) \subset \mathscr { R } ( S ) R(SA)R(S) 知, S A ∈ F ( X ) . S A \in \mathscr { F } ( X ) . SAF(X).

{ f 1 , f 2 , ⋯   , f k } \left\{ f _ { 1 } , f _ { 2 } , \cdots , f _ { k } \right\} { f1,f2,,fk} R ( S ) \mathscr { R } ( S ) R(S) 的一组基.于是

R ( A S ) = span ⁡ { A f 1 , A f 2 , ⋯   , A f k } , \mathscr { R } ( A S ) = \operatorname { s p a n } \left\{ A f _ { 1 } , A f _ { 2 } , \cdots , A f _ { k } \right\} , R(AS)=span{ Af1,Af2,,Afk},

A S ∈ A ( X ) . A S \in \mathcal { A } ( X ) . ASA(X).

I I I X X X 上 的恒等算子, T ∈ F ( X ) . T \in \mathscr { F } ( X ) . TF(X). 我们要研究 R ( I + T ) \mathscr { R } ( I + T ) R(I+T) 是否在 X X X 中闭为此,我们
首先引入商空间的概念如下:

X X X 是 赋范线性空间, V V V X X X 中 的闭子空间.定义 X X X上的一个等价关系 " ∼ " " \sim " "" 为:设 x 1 , x 2 ∈ X , x 1 ∼ x 2 x _ { 1 } , x _ { 2 } \in X , x _ { 1 } \sim x _ { 2 } x1,x2X,x1x2 表示 x 1 − x 2 ∈ V . x _ { 1 } - x _ { 2 } \in V . x1

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值