在本节中,引进与矩阵最接近的算子,称为有限秩算子.
定义
设 X , Y X , Y X,Y 是巴拿赫空间, T ∈ B ( X , Y ) . T \in \mathscr { B } ( X , Y ) . T∈B(X,Y). 如果 R ( T ) \mathscr { R } ( T ) R(T) 是有限维的子空间,则称 T T T是有限秩算子
记 R ( X , Y ) \mathscr { R } ( X , Y ) R(X,Y) 为 B ( X , Y ) \mathscr { B } ( X , Y ) B(X,Y)中有限秩算子全体并记 A ( X ) = A ( X , X ) . \mathscr { A } ( X ) = \mathscr { A } ( X , X ) . A(X)=A(X,X).
例1
设 X , Y X , Y X,Y 是巴拿赫空间.设 ∣ y 1 , y 2 , ⋯ , y n ∣ \left| y _ { 1 } , y _ { 2 } , \cdots , y _ { n } \right| ∣y1,y2,⋯,yn∣ 是 Y Y Y中的一组线性无关向量 f 1 , f _ { 1 } , f1, f 2 , ⋯ , f n ∈ X ′ . f _ { 2 } , \cdots , f _ { n } \in X ^ { \prime } . f2,⋯,fn∈X′. 定义
T x = ∑ k = 1 n y k f k ( x ) , 任意 x ∈ X . T x = \sum _ { k = 1 } ^ { n } y _ { k } f _ { k } ( x ) , \quad 任 意 x \in X . Tx=k=1∑nykfk(x),任意x∈X.
则 T T T 是线性算子, R ( T ) ⊂ span { y 1 , y 2 , ⋯ , y n } \mathscr { R } ( T ) \subset \operatorname { s p a n } \left\{ y _ { 1 } , y _ { 2 } , \cdots , y _ { n } \right\} R(T)⊂span{ y1,y2,⋯,yn}且
∥ T x ∥ ⩽ ∑ k = 1 n ∥ y k f k ( x ) ∥ ⩽ ∑ k = 1 n ∥ y k ∥ ∥ f k ∥ ∥ x ∥ , \| T x \| \leqslant \sum _ { k = 1 } ^ { n } \left\| y _ { k } f _ { k } ( x ) \right\| \leqslant \sum _ { k = 1 } ^ { n } \left\| y _ { k } \right\| \left\| f _ { k } \right\| \| x \| , ∥Tx∥⩽k=1∑n∥ykfk(x)∥⩽k=1∑n∥yk∥∥fk∥∥x∥,
故 ∥ T ∥ ⩽ ∑ k = 1 n ∥ y k ∥ ∥ f k ∥ , \| T \| \leqslant \sum _ { k = 1 } ^ { n } \left\| y _ { k } \right\| \left\| f _ { k } \right\| , ∥T∥⩽∑k=1n∥yk∥∥fk∥, 从而 T ∈ T ( X , Y ) . T \in \mathscr { T } ( X , Y ) . T∈T(X,Y).
下面的定理表明: A ( X ) \mathscr { A } ( X ) A(X) 是 B ( X ) \mathscr { B } ( X ) B(X)的一个理想
定理1
设 X X X 是巴拿赫空间, S , T ∈ A ( X ) , A ∈ B ( X ) . S , T \in \mathscr { A } ( X ) , A \in \mathscr { B } ( X ) . S,T∈A(X),A∈B(X). 则 F ( X ) \mathscr { F } ( X ) F(X) 是 B ( X ) \mathscr { B } ( X ) B(X) 的一个理想,即
S + T ∈ T ( X ) , A S , S A ∈ T ( X ) . S + T \in \mathscr { T } ( X ) , A S , S A \in \mathscr { T } ( X ) . S+T∈T(X),AS,SA∈T(X).
证明
由 B ( S + T ) ⊂ B ( S ) + B ( T ) \mathscr { B } ( S + T ) \subset \mathscr { B } ( S ) + \mathscr { B } ( T ) B(S+T)⊂B(S)+B(T)知, S + T ∈ A ( X ) . S + T \in \mathscr { A } ( X ) . S+T∈A(X).
由 R ( S A ) ⊂ R ( S ) \mathscr { R } ( S A ) \subset \mathscr { R } ( S ) R(SA)⊂R(S) 知, S A ∈ F ( X ) . S A \in \mathscr { F } ( X ) . SA∈F(X).
设 { f 1 , f 2 , ⋯ , f k } \left\{ f _ { 1 } , f _ { 2 } , \cdots , f _ { k } \right\} { f1,f2,⋯,fk} 为 R ( S ) \mathscr { R } ( S ) R(S) 的一组基.于是
R ( A S ) = span { A f 1 , A f 2 , ⋯ , A f k } , \mathscr { R } ( A S ) = \operatorname { s p a n } \left\{ A f _ { 1 } , A f _ { 2 } , \cdots , A f _ { k } \right\} , R(AS)=span{ Af1,Af2,⋯,Afk},
故 A S ∈ A ( X ) . A S \in \mathcal { A } ( X ) . AS∈A(X).
设 I I I 是 X X X 上 的恒等算子, T ∈ F ( X ) . T \in \mathscr { F } ( X ) . T∈F(X). 我们要研究 R ( I + T ) \mathscr { R } ( I + T ) R(I+T) 是否在 X X X 中闭为此,我们
首先引入商空间的概念如下:
设 X X X 是 赋范线性空间, V V V 是 X X X 中 的闭子空间.定义 X X X上的一个等价关系 " ∼ " " \sim " "∼" 为:设 x 1 , x 2 ∈ X , x 1 ∼ x 2 x _ { 1 } , x _ { 2 } \in X , x _ { 1 } \sim x _ { 2 } x1,x2∈X,x1∼x2 表示 x 1 − x 2 ∈ V . x _ { 1 } - x _ { 2 } \in V . x1