泛函分析基础9-内积空间和希尔伯特空间1:内积空间的基本概念

在第七章中,我们介绍了赋范线性空间的概念. 那里的元素只有长度(范数),但没有角度.

回想在二维及三维空间中,除有向量的长度概念外,还有两个向量夹角的概念,并由后者导出向量的内积、正交性,一个向量在另一个向量上的投影,向量的正交分解等一系列概念,从而建立起二维及三维空间的几何学.

能否把向量正交的概念加以推广,从而建立起无限维空间中的几何理论呢?答案是肯定的.

20世纪初,希尔伯特从研究积分方程出发,建立了一类无限维空间,现称为希尔伯特空间,其中具有内积,因而可以引入向量正交的概念以及投影的概念,从而可以在内积空间中建立起相应的几何学.

希尔伯特空间是赋范线性空间的特例,一种最接近于 R n \mathbf { R } ^ { n } Rn的无限维空间.类似 R n \mathbf { R } ^ { n } Rn中有 n n n 个坐标,向量有 n n n 个基向量一样,希尔伯特空间有可数个基向量.因而可以考察希尔伯特空间上的傅里叶(Fourier)分析以及其上连续线性泛函的一般形式和它的共轭空间.这一章中还要讨论希尔伯特空间上的共轭算子、酉算子、自伴算子和正常算子的一些初步性质,这些算子是有限维空间中相应矩阵在希尔伯特空间中的推广。


在复欧氏空间中,向量除了有长度的概念外,还定义了两个向量的内积的运算,

即若

a = ( ξ 1 , ξ 2 , ⋯   , ξ n ) , b = ( η 1 , η 2 , ⋯   , η n ) , a = \left( \xi _ { 1 } , \xi _ { 2 } , \cdots , \xi _ { n } \right) , b = \left( \eta _ { 1 } , \eta _ { 2 } , \cdots , \eta _ { n } \right) , a=(ξ1,ξ2,,ξn),b=(η1,η2,,ηn),

a a a b b b 的 内积定义为

⟨ a , b ⟩ = ξ 1 η ˉ 1 + ξ 2 η ˉ 2 + ⋯ + ξ n η ˉ n , ( 1 ) \langle a , b \rangle = \xi _ { 1 } \bar { \eta } _ { 1 } + \xi _ { 2 } \bar { \eta } _ { 2 } + \cdots + \xi _ { n } \bar { \eta } _ { n } , \quad\quad(1) a,b=ξ1ηˉ1+ξ2ηˉ2++ξnηˉn,(1)

其中 η ˉ i \bar { \eta } _ { i } ηˉi 表示 η i \eta _ { i } ηi的复共轭,并且内积与向量 a a a 的长度有以下关系

∥ a ∥ = ⟨ a , a ⟩ . \| a \| = \sqrt { \langle a , a \rangle } . a=a,a .

由内积定义,可知两个向量 a a a b b b 正 交等价于 ⟨ a , b ⟩ = 0. \langle a , b \rangle = 0 . a,b=0. 显然,在有限维复欧氏空间 E n E ^ { n } En中,由(1)定义的内积具有下述性质:

1 ∘ ⟨ a , a ⟩ ⩾ 0 , 1 ^ { \circ } \langle a , a \rangle \geqslant 0 , 1a,a0, ⟨ a , a ⟩ = 0 \langle a , a \rangle = 0 a,a=0 等价于 a = 0 ; a = 0 ; a=0;
2 ∘ ⟨ α a + β b , c ⟩ = α ⟨ a , c ⟩ + β ⟨ b , c ⟩ , 2 ^ { \circ } \langle \alpha a + \beta b , c \rangle = \alpha \langle a , c \rangle + \beta \langle b , c \rangle , 2αa+βb,c=αa,c+βb,c,其中 a , b , c ∈ E n , α , β a , b , c \in E ^ { n } , \alpha , \beta a,b,cEn,α,β 为复数;
3 ∘ ⟨ a , b ⟩ = ⟨ b , a ⟩ ‾ , a , b ∈ E n . 3 ^ { \circ } \langle a , b \rangle = \overline { \langle b , a \rangle } , a , b \in E ^ { n } . 3a,b=b,a,a,bEn.

在复欧氏空间 E n E ^ { n } En 的欧几里得(Euclid)几何学中所用到内积的性质主要是上面三条,因此利用这三条性质,我们也在一般的线性空间中引入内积的概念.

定义

X X X 是复线性空间,如果对 X X X 中任何两个向量 x , y , x , y , x,y, 有一复数 ⟨ x , y ⟩ \langle x , y \rangle x,y 与之对应,并且满足下列条件:
1 ∘ ⟨ x , x ⟩ ⩾ 0 , 1 ^ { \circ } \langle x , x \rangle \geqslant 0 , 1x,x0, ⟨ x , x ⟩ = 0 \langle x , x \rangle = 0 x,x=0 等价于 x = 0 , x ∈ X ; x = 0 , x \in X ; x=0,xX;
2 ∘ ⟨ α x + β y , z ⟩ = α ⟨ x , z ⟩ + β ⟨ y , z ⟩ , x , y , z ∈ X , α , β 2 ^ { \circ } \langle \alpha x + \beta y , z \rangle = \alpha \langle x , z \rangle + \beta \langle y , z \rangle , x , y , z \in X , \alpha , \beta 2

  • 5
    点赞
  • 9
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值