实变函数论2-点集1-2-欧氏空间2-1:邻域【ℝⁿ中所有和定点P₀的距离小于定数δ>0的点的全体,即集合{P:d(P,P₀)<δ}称为点P₀之δ邻域,记为U(P₀,δ);P₀称为中心,δ称为半径】

下面我们将考察 R n \mathbf { R } ^ { n } Rn 中的极限、开集、闭集、紧集等一系列概念,它们的基础都是邻域,而邻域则依靠距离即可作出。

本章的结论在一般度量空间中也都是成立的. 这一点我们在第七章还要涉及,

我们从定义邻域的概念开始

定义1

R n \mathbf { R } ^ { n } Rn 中所有和定点 P 0 P _ { 0 } P0 之距离小于定数 δ > 0 \delta > 0 δ>0 的点的全体,即集合

{ P : d ( P , P 0 ) < δ } \left\{P : d \left( P , P _ { 0 } \right) < \delta \right\} {P:d(P,P0)<δ}

称为 P 0 P _ { 0 } P0 δ \delta δ 邻域,并记为 U ( P 0 , δ ) \color{red}{U \left( P _ { 0 } , \delta \right)} U(P0,δ) .

  • P 0 P _ { 0 } P0 称为邻域的中心,
  • δ \delta δ 称为邻域的半径.

在不需要特别指出是怎样的一个半径时,也干脆说是 P 0 P _ { 0 } P0 的一个邻域,记作 U ( P 0 ) . U \left( P _ { 0 } \right) . U(P0).

显然,在 R , \mathbf { R } , R, R 2 , R 3 \mathbf { R } ^ { 2 } , \mathbf { R } ^ { 3 } R2,R3 中的 U ( P 0 , δ ) , U \left( P _ { 0 } , \delta \right) , U(P0,δ), 就是以 P 0 P _ { 0 } P0 为中心 δ \delta δ 为 半径的开区间,开圆和开球。

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值