定义
设 E E E 为 R n \mathbf { R } ^ { n } Rn 中的点集,如果对任一点集 T T T 都有
m ∗ T = m ∗ ( T ∩ E ) + m ∗ ( T ∩ E c ) , m ^ { * } T = m ^ { * } ( T \cap E ) + m ^ { * } \left( T \cap E ^ { c } \right) , m∗T=m∗(T∩E)+m∗(T∩Ec),
则称 E E E 是 L可测的。这时 E E E 的 L外测度 m ∗ E m ^ { * } E m∗E 即称为 E E