在前一节中,我们定义了可测集合,并且讨论了可测集合的一些性质,但是在一般常见的集合中有哪些是可测的呢?我们现在来回答这个问题 定理3 凡开集、闭集皆可测。 证明 这是因为任何非空开集可表示为可数多个互不相交的左开右闭区间之并(在 R \mathbf { R } R则可表示为有限个或可数多个开区间之并,其中可包含无界的区间),而区间是可测的.开集既可测,则闭集作为开集之余集自然也可测( 8 8 8 2定理2).