实变函数论3-测度论3-可测集类3:定理3【凡开集、闭集皆可测】

在前一节中,我们定义了可测集合,并且讨论了可测集合的一些性质,但是在一般常见的集合中有哪些是可测的呢?我们现在来回答这个问题

定理3

凡开集、闭集皆可测。

证明
这是因为任何非空开集可表示为可数多个互不相交的左开右闭区间之并(在 R \mathbf { R } R则可表示为有限个或可数多个开区间之并,其中可包含无界的区间),而区间是可测的.开集既可测,则闭集作为开集之余集自然也可测( 8 8 8 2定理2).

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值