定理6 设 E E E 是任一可测集,则一定存在 F σ F _ { \sigma } Fσ 型集 F F F, 使 F ⊂ E F \subset E F⊂E, 且 m ( E \ F ) = 0 m ( E \backslash F ) = 0 m(E\F)=0. 证明 因 E c E ^ { c } Ec 也可测,由定理5知,存在 G δ G